Model Question Paper ENGINEERING MATHEMATICS - I (14MAT11)

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

MODULE 1

1)	a) If $y = e^{msin^{-1}x}$, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (m^2 + n^2)y_n = 0$	(7 marks)
	b) Find the angle of intersection between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$	(6 marks)
	c) Derive an expression to find radius of curvature in polar form	(7 marks)

OR

2)	a) [If x=sint, y=cosmt, prove that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} + (m^2 - n^2)y_n = 0$	(7 marks)
	a)	Find the pedal equation , $r^n = a^n \cos \theta$	(6 marks)
	b)	Show that the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ is $-\frac{3a}{8\sqrt{2}}$	(7 marks)

MODULE 2

3) a) Obtain the Maclaurin's series for $\log(1+\sin x)$ upto the term containing x^4 (7 marks) b) If u be homogeneous function of degree n in x and y, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$ (6 marks) c) If u= f(x-y, y-z, z-x) then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ (7 marks)

OR

4) a) Evaluate
$$\lim_{x \to 0} \left(\frac{\alpha^{N} + b^{N} + c^{N}}{8}\right)^{1/x}$$
 (6 marks)

a) If
$$u = \tan^{-1}\left(\frac{x^{s} + y^{s}}{x - y}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = sin2u$ (7 marks)

b) If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$, $w = xy + yz + zx$, then $find \frac{\partial (uv, w)}{\partial (x, y, z)}$ (7 marks)

MODULE 3

5)	a)	A particle moves along the curve $x=1-t^3$, $y=1+t^2$ and $z=2t-5$, find the components of	
		velocity and acceleration at t=1 in the direction $2i+j+2k$	(7 marks)
	b)	Using differentiation under integral sign, evaluate $\int_0^1 \frac{x^n - 1}{\log x} dx$, $\propto \ge 0$	(7marks)
	c)	State the general rules to trace a polar curve	(6 marks)

OR

6)	a)	Show that $\vec{F} = \frac{xi+yj}{x^2+y^2}$ is both solenoidal and irrotational	(7 marks)
	a)	Show that $\operatorname{Curl}(\operatorname{grad} \emptyset) = \vec{0}$	(6 maeks)
	b)	State the general rules to trace a cartesian curve	(7 marks)

MODUEL 4

7)	a)	Obtain the reduction formula for $\int_0^{\pi/2} \sin^n x dx$	(7 marks)
	b)	Solve $(y^2 e^{xy^2} + 4x^3)dx + (2xy e^{xy^2} - 3y^2)dy = 0$	(6 marks)
	2)	Show that the outboard trainstance of a family of simples massing through the arisin	hardena

c) Show that the orthogonal trajectories of a family of circles passing through the origin having centres on x-axis is a family of circles passing through the origin having their cetres on y-axis
(7 marks)

OR

8)	a) Evaluate ∫ ₀ ^{π/6} cos ⁴ 3θ sin ³ 6θ dθ	(7 marks)
	b) Solve $x \frac{dy}{dx} + y = x^3 y^6$	(6 marks)

c) If a substance cools from 370k to 330k in 10minutes, when the temperature of the surrounding air is 290k. Find the temperature of the substance after 40 minutes (7 marks)

MODULE 5

9)	a) Solve $x+4y-z=-5$, $x+y-6z=-12$, $3x-y-z=4$ by Gauss elimination method.	(7 marks)
	b) Diagonalise the matrix $A = \begin{pmatrix} -19 & 7 \\ -42 & 16 \end{pmatrix}$	(6 marks)
	c) Determine the largest eigan value and the corresponding eigan vector of A= $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$	$ \begin{array}{cc} -1 & 0 \\ 2 & -1 \\ -1 & 2 \end{array} \right) $
	using Rayleigh's Power method.	

(7 marks)

- 10) a) Solve by LU decomposition method 3x+2y+7z=4, 2x+3y+z=5, 3x+4y+z=7 (7 marks)
 - b) Show that the transformation $y_1 = 2x_1 2x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is regular and find the inverse transformation. (6 marks)
 - c) Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form by orthogonal transformation.

(7 marks)