III SEMESTER

B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - III

ENGINEERING MATHEMATICS-III
(Common to All Branches)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MAT31</td>
<td>20</td>
<td>80</td>
<td>03</td>
</tr>
</tbody>
</table>

Number of Lecture Hours/Week : 04
Total Number of Lecture Hours : 50

Credits - 4

Course Objectives: This course will enable the students to

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td>10 Hours</td>
<td></td>
</tr>
<tr>
<td>Module -2</td>
<td>10 Hours</td>
<td></td>
</tr>
<tr>
<td>Module -3</td>
<td>10 Hours</td>
<td></td>
</tr>
</tbody>
</table>
Module -4

10 Hours

Module -5

10 Hours

Course Outcomes: After studying this course, students will able to:

Graduate Attributes (as per NBA)

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - III

ELECTRONIC INSTRUMENTATION AND MEASUREMENTS
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number of Lecture Hours/Week</th>
<th>Exam Marks</th>
<th>Total Number of Lecture Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML 32</td>
<td>20</td>
<td>04</td>
<td>80</td>
<td>50</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits - 4

Course Objectives: This course will enable the students to
- Impart with the knowledge of generalized measurement systems.
- Learn the characteristics of various types of measurement systems and errors in measuring instruments.
- Analyze the circuits for the measurement of Resistance, Capacitance, Inductance, and Frequency.
- Impart with the basic concepts of CRO and its usage for the measurement of various parameters.
- Understand the concepts of Ammeters, Voltmeter and Multimeters
- Understand the importance of Display Devices and Recorders in practical fields

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT)Leve l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td>10 Hours</td>
<td>L1, L2</td>
</tr>
</tbody>
</table>
| A). Measurements: introduction, Significance of measurements, methods of measurements, instruments and measurement systems, Functions of instruments and measurement systems, Applications of measurement systems.
Measurement Errors: Introduction Gross errors and systematic errors, Absolute and relative errors, basic concepts of accuracy, Precision, Resolution and Significant figures, Measurement error combinations. (relevant problems) | | |

| Module -2 | 10 Hours | L1, L2, L3, L5 |
| A). Ammeters, Voltmeter and Multimeters: Introduction, DC ammeter principle only, DC voltmeter, Multi-range voltmeter, Extending voltmeter ranges, Loading, Peak responding and True RMS voltmeters. (relevant problems)
B). Digital Voltmeters: Introduction, Ramp type, Dual slope integrating type (V–T), integrating type (V–F) and Successive approximation type (relevant problems). | | |
Digital Instruments: Introduction, Block diagram of a Basic Digital Multi-meter. Digital frequency meters: Basic circuit of a Digital frequency meter, Basic circuit for frequency measurement.

Module -3
A). Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram and working of each block, Typical CRT connections, Dual beam and dual trace CROs, Electronic switch.

B). Special Oscilloscopes:
- Delayed time-base oscilloscopes: Need for a time delay & delayed-time-base system.
- Analog storage oscilloscopes: Need for trace storage, bistable storage CRT, Variable persistence storage CRT.
- Digital storage oscilloscopes: Basic DSO operation only.

<table>
<thead>
<tr>
<th>10 Hours</th>
<th>L1,L2,L3, L4</th>
</tr>
</thead>
</table>

Module -4
A). Signal Generators:
- Introduction, Fixed and variable AF oscillator, Standard signal generator, Modern laboratory signal generator, AF sine and Square wave generator, Function generator, Square and Pulse generator.

B). Bridge Circuits for Measurement of R, L & C:
- **DC bridges:** Introduction, Wheatstone’s bridge, Kelvin Bridge
- **AC bridges:** Capacitance Comparison Bridge, inductance Comparison Bridge, Maxwell’s bridge, Schering Bridge. (relevant problems)

<table>
<thead>
<tr>
<th>10 Hours</th>
<th>L1,L2,L3,L5,L6</th>
</tr>
</thead>
</table>

Module -5
Display Devices and Recorders:

<table>
<thead>
<tr>
<th>10 Hours</th>
<th>L1,L2,L3, L5</th>
</tr>
</thead>
</table>

Course Outcomes:
- After studying this course, students will able to:
 - Analyze instrument characteristics, errors and generalized measurement system.
 - Analyze and use the circuit for the measurement of R, L, C, F, I, V etc
 - Use of Ammeters, Voltmeter and Multimeters and CRO for measurement
 - Analyze and interpret different signal generator circuits for the generation of various waveforms
 - Understand and use different display devices and recorders

Graduate Attributes (as per NBA)
- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Modern tool usage

Question Paper Pattern:
The question paper will have TEN questions.
Each full question carry 16 marks
There will be TWO full questions (with maximum of FOUR sub questions) from each module.
Each full question will have sub questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:
1. “Electronic Instrumentation”, H. S. Kalsi, TMH, 2004 (Module- 2,3 & 4)

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)

Choice Based Credit System (CBCS)

Semester - III

ANALOG ELECTRONIC CIRCUITS

(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>: 15 EI/BM/ML 33</th>
<th>IA Marks</th>
<th>: 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lecture Hours/Week</td>
<td>04</td>
<td>Exam Marks</td>
<td>: 80</td>
</tr>
<tr>
<td>Total Number of Lecture Hours</td>
<td>50</td>
<td>Exam Hours</td>
<td>: 03</td>
</tr>
</tbody>
</table>

Credits - 4

Course Objectives: This course will enable the students

- With the knowledge of Electronic devices.
- To know modeling of BJT and FET for analysis and to Design of BJT Amplifier, Hybrid Equivalent and Hybrid π Models.
- To know construction and characteristics of JFETs and MOSFETs.
- Describe various types of FET biasing, and Demonstrate use of FET amplifiers.
- Demonstrate and Generalize Frequency response of BJT and FET amplifiers at various frequencies.
- Analyze Power amplifier circuits in different modes of operation.
- To know the concept of Feedback and its effect on amplifier circuits and Oscillator circuits-operation and generation of low and high frequency signal using BJT/FET/Op-amp.

Revised Bloom’s Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, and L6 - Creating

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT)Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 BJT AC Analysis</td>
<td>10 Hours</td>
<td>L1 L2</td>
</tr>
<tr>
<td>BJT modeling, re transistor model: Common Emitter Configuration, Voltage-Divider Bias, CE Emitter-Bias Configuration (Excluding P-spice Analysis),Emitter Follower Configuration, Determining Current Gain, Effect of R_L and R_S, Cascaded Systems, RC- Coupled BJT Amplifier, Cascade Connection, Darlington Connection. The Hybrid Equivalent model, Approximate Hybrid Equivalent Circuit, Fixed bias configuration, Voltage-Divider configuration. (Relevant problems on above topics) Complete Hybrid Equivalent Model and Hybrid π Model.</td>
<td>10 Hours</td>
<td>L1 L2</td>
</tr>
<tr>
<td>Module -2 Field Effect Transistors</td>
<td>10 Hours</td>
<td>L1 L2</td>
</tr>
<tr>
<td>Field Effect Transistors, Construction and Characteristics of JFETs, Transfer Characteristics, Applying Shockley’s Equation. Depletion Type MOSFET: Basic Construction, Basic Operation and Characteristics, P-Channel Depletion Type MOSFET and Symbols, Enhancement Type MOSFET: Basic Construction, Basic Operation</td>
<td>10 Hours</td>
<td>L1 L2</td>
</tr>
</tbody>
</table>
and Characteristics, P-Channel Enhancement Type MOSFETs and Symbols. Relevant problems on above topics, **CMOS-Basics.**

FET Biasing
Introduction, Fixed-Bias Configuration, Self-Bias Configuration, Voltage-Divider Biasing. Relevant problems on above topics

<table>
<thead>
<tr>
<th>Module -3</th>
<th>FET Amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET Amplifiers</td>
<td></td>
</tr>
<tr>
<td>Introduction, JFET Small Signal Model, JFET AC equivalent Circuit, Fixed- Bias Configuration, Self-Bias Configuration, Voltage-Divider Configuration, Source Follower Configuration. Relevant problems on above topics.</td>
<td>10 Hours</td>
</tr>
<tr>
<td>BJT and JFET Frequency Response:</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>Introduction, General Frequency Considerations, Low Frequency Response of BJT Amplifier, Low Frequency Response of FET Amplifier, Miller Effect Capacitance, High Frequency Response of FET Amplifier, Multistage frequency effects. Relevant problems on above topics. (Excluding P-spice Analysis)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -4</th>
<th>Power Amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Amplifiers</td>
<td></td>
</tr>
<tr>
<td>Introduction: Definitions and Amplifier Types, Series Fed Class A Amplifier, Transformer Coupled Class A Amplifier, Class B Amplifier operation.</td>
<td></td>
</tr>
<tr>
<td>Class B amplifier circuits: Transformer-Coupled Push-Pull Circuits, Complementary –Symmetry Circuits only, Amplifier Distortion, Class C and Class D Amplifier. Relevant Problems on above topics.</td>
<td>10 Hours</td>
</tr>
<tr>
<td></td>
<td>L1,L2, L3,L4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -5</th>
<th>Feedback and Oscillator Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback and Oscillator Circuits</td>
<td></td>
</tr>
<tr>
<td>Unijunction transistor oscillator.</td>
<td>10 Hours</td>
</tr>
<tr>
<td></td>
<td>L2, L3</td>
</tr>
</tbody>
</table>

Course Outcomes: After studying this course, students will able to:
- Explain the Working principles, characteristics and basic applications of BJT and FET.
- Modeling of BJT/FET for analysis
- Design Single stage, Multistage amplifier, with and without feedback
- Analyze Frequency response of BJT and FET.
- Acquire the knowledge of classifications of Power amplifier, operation, and able to design power amplifier.
- Apply the knowledge gained in the design of BJT/FET circuits in Oscillators to generate different
frequency signals.

Graduate Attributes (as per NBA)
- Engineering Knowledge
- Problem Analysis
- Design / development of solutions (partly)
- Interpretation of data

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

Reference Books:
1. David A. Bell, “Electronic Devices and Circuits”, Oxford University Press.
Module 1

Principles of combinational logic: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables, Karnaugh maps - up to 4 variables, Quine-McCluskey minimization technique

Introduction to Verilog: Structure of Verilog module, Operators, data types, Styles of description - Data flow description, Behavioral description, Implement logic gates, half adder and full adder using Verilog data flow description.

Module 2

Verilog Behavioral description: Structure, variable assignment statement, sequential statements, loop statements, Verilog behavioral description of Multiplexers (2:1,4:1,8:1) and De-multiplexers

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td>10 Hours</td>
<td>L2, L3, L4</td>
</tr>
<tr>
<td>Principles of combinational logic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Verilog:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module -2</td>
<td>10 Hours</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>Combinational Functions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verilog Behavioral description:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module -3
Analysis and design of combinational logic: Encoders: Binary coded decimal codes, Binary – Gray vice versa, BCD – Excess 3 Encoders: Realization and Priority Encoders, Decoders: BCD – Decimal, BCD – Seven segment, Seven segment display.
Verilog behavioral description of Encoders (8 to 3 with priority and without priority), Decoders (2 to 4).

10 Hours L1,L2

Module -4
Sequential Logic Circuits-1: Latches and Flip-Flops: SR-latch, D-latch, D flip-flop, JK flip-flop, T flip-flop Master slave FF, Edge trigger and Pulse trigger FF, Registers and Shift Registers: PISO, PIPO, SISO, SIPO, Right shift and left shift, Universal Shift register.
Verilog behavioral description of latches (D-latch, SR latch) and flip-flops (D, T, JK, SR flip-flops).

10 Hours L2,L3,L6

Module -5
Counters, design and their applications: Counters-Binary ripple counters, Synchronous binary counters, Modulo N counters – Synchronous and Asynchronous counters.
Verilog behavioral description of Synchronous and Asynchronous counters, sequential counters.
Synthesis of Verilog: Mapping process in the hardware domain-
Mapping of signal assignment, variable assignment, if statements, else-if statements, loop statements

10 Hours L2,L3,L4, L6

Course Outcomes:
After studying this course, students will be able to:
- Simplify Boolean functions using K-map and Quine-McCluskey minimization technique
- Analyze, design and write verilog code for combinational logic circuits. (MUX, De-MUX, adder and subtractor, and comparator circuits)
- Analyze and design code converters, encoders and decoders.
- Analyze and design of synchronous sequential circuits
- Analyze sequential circuits, Moore/Mealy machines

Graduate Attributes (as per NBA)
- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Modern tool usage

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.
Text Books:
1. *Digital Logic Applications and Design* by John M Yarbrough, Thomson Learning, 2001 (Modules 1, 2, 3, 4, 5 – Logic design)
2. *HDL Programming VHDL and Verilog* by Nazeih M. Botros, 2009 reprint, Dreamtech press (Modules 1, 2, 3, 4, 5 Verilog description)

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - III

TRANSDUCERS AND INSTRUMENTATION

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15EI35</td>
<td>20</td>
<td>80</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

Number of Lecture Hours/Week
- 04

Total Number of Lecture Hours
- 50

Credits
- 4

Course Objectives:
- To provide the fundamental knowledge of transducers, instrumentation and measurement systems.
- To understand the functional elements of instrumentation/measurement systems.
- To impart the knowledge of static and dynamic characteristics of instruments, and understand the factors in selection of instruments for measurement.
- To discuss the principle, design and working of transducers for the measurement of displacement, level, strain, force, torque, pressure, sound and speed.

Revised Bloom’s Taxonomy Levels:
- L1 – Remembering
- L2 – Understanding
- L3 – Applying
- L4 – Analysing
- L5 – Evaluating
- L6 – Creating

Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT)Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 Classification and Functional Elements of Instrument/ measurement system: Measurement, significance of measurement, instruments and measurement systems, mechanical, electrical and electronic instruments, Deflection & Null type instruments and their comparison, Analog and digital modes of operation, functions of instruments and measurement systems, applications of measurement systems, Elements of generalized measurement system, Input-output configuration of measuring instruments and measurement systems, methods of correction for interfering and modifying inputs. Transducers, Classifications of transducers-primary & secondary, active & passive, analog and digital transducers.</td>
<td>10 Hours</td>
<td>L1, L2</td>
</tr>
<tr>
<td>Module -2 Static and Dynamic Characteristics: Static calibration and error calibration curve, accuracy and precision, indications of precision, static error, scale range and scale span, reproducibility and drift, repeatability, signal to noise ratio, sensitivity, linearity, hysteresis, threshold, dead zone and dead time, resolution, signal to noise ratio, factors influencing the choice of transducers/instruments. Dynamic response – dynamic characteristics, time domain analysis & different types of inputs, frequency domain analysis. Time domain response – zero order system, first order electrical system, response</td>
<td>10 Hours</td>
<td>L1, L2, L3, L4</td>
</tr>
</tbody>
</table>
of a first order system to step & ramp input, Second order system, response of a second order system to step input, time domain specifications, frequency response of first and second order system.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement of Level: Capacitance probes, conductivity probes, differential pressure level detector, float level devices, optical level switches, radiation level sensor, ultrasonic level detector, thermal level sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|---|---|---|---|

<table>
<thead>
<tr>
<th>Module -5</th>
<th>Measurement of Pressure: Introduction, Diaphragms, Other elastic elements, Transduction methods – potentiometric device, strain gauge transducer, variable reluctance, LVDT type, variable capacitance device (principle & working, no derivation), force balance transducer with analysis, thin-film pressure transducers, piezoelectric pressure transducer, pressure multiplexer, pressure calibration. Miscellaneous Sensors: Noise (sound) Sensors, Speed Sensors, Thickness Measurement, Weather stations</th>
<th>10 Hours</th>
<th>L1, L2, L3, L4</th>
</tr>
</thead>
</table>

Course Outcomes: After studying this course, students will able to:
- Define the transducer, instrument, measurement and classify different types of transducers
- Explain the functional elements of instrumentation / measurement systems
- Discuss the input-output configuration of measurement systems
- Define, interpret and analyze the static and dynamic characteristics of instruments
- Explain the principle, design and analyze the transducers for the measurement of displacement, level, strain, force, torque, pressure, sound and speed

Graduate Attributes (as per NBA)
- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Engineer and society
- Environment & sustainability
- Lifelong learning

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester – III (Elective-I)

NETWORK ANALYSIS
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Total Number of Lecture Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML 36</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>

IA Marks: 20
Exam Marks: 80
Exam Hours: 03

Credits - 4

Course Objectives: This course will enable the students to
 • To introduce the Basic circuit laws, Network theorems and Analyze the networks.
 • To analyze the networks by using optimized methods
 • To analyze the network behavior during switching states.
 • To realize the network parameters.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 Basic concepts: Sources of electrical energy, Source transformation & Source shifting, Network reduction using star-delta transformation, loop and node analysis with dependent & independent sources for DC networks, concept of super node and super mesh analysis for only independent sources for DC networks.</td>
<td>10 Hours</td>
<td>L_1=Remembering, L_2=Understanding, L_3=Applying, L_4=Analysis.</td>
</tr>
<tr>
<td>Module -2 Network theorems: Super position, reciprocity, Millman’s theorem (for DC networks), Thevinin’s & Norton’s theorem (for DC networks), and Maximum power transfer theorems (for AC & DC networks)</td>
<td>10 Hours</td>
<td>L_1=Remembering, L_2=Understanding, L_3=Applying, L_4=Analysis</td>
</tr>
<tr>
<td>Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their representation, evaluation of initial & final conditions in RL, RC & RLC circuits for DC excitations. Two port network parameters: Definitions and modeling of Z, Y, H & transmission parameters.</td>
<td>10 Hours</td>
<td>L_1=Understanding, L_2=Analyzing, L_3=Applying, L_4=Synthesis</td>
</tr>
<tr>
<td>Module -4 Resonant Circuits: Series resonance: Variation of current and voltage with frequency, Selectivity & Bandwidth, Q-factor Parallel resonance: General case-resistance present in both branches, Selectivity & Bandwidth, Maximum impedance conditions with Capacitor, Inductor or</td>
<td>10 Hours</td>
<td>L_1=Understanding, L_2=Analyzing, L_3=Applying, L_4=Realizing</td>
</tr>
</tbody>
</table>
frequency as variable.

Module -5
Network topology: Graph of a network, concepts of: tree & co-tree, incidence matrix, tie-set & cut-set schedules, Solution of resistive networks using equilibrium equations in matrix form, Principle of duality.

| 10 Hours | L₁ = Understanding
| L₂ = Analyzing
| L₃ = Applying
| L₄ = Evaluation |

Course Outcomes: After studying this course, students will able to:
- Apply the basic concepts (Laws, theorems) of networks to obtain solution.
- Choose the Appropriate/specific technique to analyze the networks.
- Realize and Analyze the network behavior

Graduate Attributes (as per NBA)
- Applying the Engineering concepts to analyze the networks
- Realizing and solving the complex circuits

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 16 marks
- In each full question, preferably 40% should be related to theoretical concepts/derivations and 60% should be related problems/solutions.
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - III

ANALOG ELECTRONIC CIRCUITS LAB
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number of Practical Hours/Week</th>
<th>Exam Marks</th>
<th>Total Number of Practical Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML L37</td>
<td>20</td>
<td>03</td>
<td>80</td>
<td>42</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits - 2

Course Objectives:
This laboratory course enables students to get practical knowledge & experience in design, assembly and evaluation/testing of
- Rectifier circuits without and with filter
- BJT as Amplifier without and with feedback
- JFET Characteristics and as Amplifier.
- MOSFET Characteristics
- BJT as Power Amplifiers
- Oscillators using BJT and FET for frequency generation
- UJT characteristics
- Verification of Theorems and applications in practical fields

<table>
<thead>
<tr>
<th>Laboratory Experiments</th>
<th>Revised Bloom’s Taxonomy (RBT)Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To design and testing of the following rectifiers with and without filters: (a) Full Wave Rectifier (center tap) (b) Bridge Rectifier.</td>
<td>L3, L4, L5, L6</td>
</tr>
<tr>
<td>2. To plot characteristics of UJT and to determine its intrinsic stand-off ratio.</td>
<td>L1, L2, L3, L4</td>
</tr>
<tr>
<td>3. To design and test the common emitter amplifier (voltage divider bias) without feedback and determine input, output impedance, gain and bandwidth.</td>
<td>L3, L4, L5, L6</td>
</tr>
<tr>
<td>4. To design and test the Emitter follower amplifier (BJT) using voltage divider bias and determine input, output impedance, gain and bandwidth.</td>
<td>L3, L4, L5, L6</td>
</tr>
<tr>
<td>5. To plot the Drain and Transfer characteristic for the given FET and to find the Drain Resistance and Trans-conductance.</td>
<td>L1, L2, L3, L4</td>
</tr>
<tr>
<td>6. To design, test and to plot the frequency response of Common Source JFET/MOSFET amplifier, and to determine its bandwidth.</td>
<td>L3, L4, L5, L6</td>
</tr>
<tr>
<td>7. To plot the input and output characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.</td>
<td>L1, L2, L3, L4</td>
</tr>
</tbody>
</table>
8. Wiring and testing of Complimentary symmetry class B push pull power amplifier and calculation of efficiency. | L1, L2, L3, L4

9. To design and test the RC-Phase shift Oscillator using BJT for the given frequency. | L3, L4, L5, L6

10. To design and test the following tuned oscillator circuits for the given frequency. (a) Hartley Oscillator using BJT (b) Colpitts Oscillator using FET. | L3, L4, L5, L6

11. Testing of crystal oscillator and to determine its frequency of oscillation. | L1, L2, L3, L4

12. Verification of Thevenin’s theorem and Maximum Power Transform theorem for the given DC circuits. | L1, L2, L3, L4

Course Outcomes: After studying this course, students will able to:
- Acquire the Working principles, characteristics and basic applications of BJT and FET.
- Modeling of BJT/FET for analysis
- Able to design Single stage, Multistage amplifier, with and without feedback
- Able to analyze Frequency response of BJT and FET.
- Acquire the knowledge of Power amplifiers, operation, and able to design power amplifier.
- Apply the knowledge gained in the design of BJT/FET circuits in Oscillators to generate different frequencies and their applications.
- Knowledge of UJT characteristics and its application.
- Applications of theorems in various practical fields.

Graduate Attributes (as per NBA)
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly)

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:
2. Electronics Laboratory Primer - A Design Approach by S.Poorna Chandra, B.Sasikala, S Chand Pub.
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - III

DIGITAL DESIGN AND HDL LAB
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML L38</td>
<td>20</td>
<td>80</td>
<td>03</td>
</tr>
</tbody>
</table>

Total Number of Practical Hours: 42

Credits - 2

Course Objectives: This course will enable the students to
- The operation of various logic gates and digital circuits and write the Verilog code.
- Design of logic circuits for combinational and sequential circuits and write Verilog code.
- Synthesis of digital circuits, FFs, shift registers and counters using ICs.
- To use FPGA/CPLD kits for downloading the Verilog code and test the output.

Laboratory Experiments:
Note: (1) Use discrete components to test and verify the logic gates.
 (2) Use FPGA/CPLD kits for downloading the Verilog code and test the output.

1. Simplification, realization of Boolean expressions using logic gates/Universal gates
 L1, L2, L3

2. To design and implement
 a) Adder/Subtractor – Full/half using logic gates.
 b) 4-bit Parallel Adder/subtractor using IC 7483.
 L3, L4, L5, L6

3. To realize
 a) BCD to Excess-3 code conversion and vice versa
 b) Binary to Gray code conversion and vice versa
 L2, L3, L4

4. To realize
 a) 4:1 Multiplexer using gates
 b) 1:8 Demux
 c) Priority encoder and 3:8 Decoder using IC74138
 d) One / Two bit comparator
 L2, L3, L4

5. To realize the following flip-flops using NAND Gates
 (a) T type (b) JK Master slave (c) D type
 L2, L3, L4

6. To realize the 3-bit counters as a sequential circuit and Mod-N Counter design
 (7476, 7490, 74192, 74193)
 L2, L3, L4

7. Adder/Subtractor – Full/half using Verilog data flow description
 L2, L3, L4

8. Code converters using Verilog Behavioral description
 a) Gray to binary and vice versa
 b) Binary to excess3 and vice versa
 L2, L3, L4

9. Multiplexers/decoders/encoder using Verilog Behavioral description
 - 8:1 mux, 3:8 decoder, 8:3 encoder, Priority encoder
 - 1:8 Demux and verify using test bench
 L2, L3, L4
Course Outcomes:
After studying this course, students will be able to:

- Realize Boolean expression using Universal gates / basic gates using ICs and Verilog.
- Demonstrate the function of adder/subtractor circuits using gates/ICs & Verilog.
- Design and analyze the Comparator, Multiplexers Decoders, Encoders circuits using ICs and Verilog.
- Design and analysis of different Flip-flops and counters using gates and FFs.
- Able to use FPGA/CPLD kits for downloading Verilog codes for shift registers and counters and check output.

Graduate Attributes (as per NBA)
- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions.

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Text Books:
2. HDL Programming VHDL and Verilog By Nazeih M. Botros, 2009 reprint, Dreamtech press.

Reference Books:
1. Digital Logic Applications and Design by John M Yarbrough, Thomson Learning, 2001
2. Fundamentals of HDL- Cyril P R Pearson/Sanguin 2010

<table>
<thead>
<tr>
<th>Course List</th>
<th>Laboratory Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Flip-flops using Verilog Behavioral description</td>
<td></td>
</tr>
<tr>
<td>a) JK type b) SR type c) T type and d) D type</td>
<td>L2, L3, L4</td>
</tr>
<tr>
<td>11. Counter up/down (BCD and binary), sequential counters using Verilog</td>
<td></td>
</tr>
<tr>
<td>Behavioral description</td>
<td>L2, L3, L4</td>
</tr>
<tr>
<td>12. Interface experiments: (a) Stepper motor (b) Relay (c) Waveform</td>
<td></td>
</tr>
<tr>
<td>generation using DAC</td>
<td>L2, L3, L4</td>
</tr>
</tbody>
</table>
IV SEMESTER

B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - IV

ENGINEERING MATHEMATICS-IV
(Common to All Branches)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15MAT41</td>
<td>20</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of Lecture Hours/Week: 04
Total Number of Lecture Hours: 50
Credits - 4

Course Objectives: This course will enable the students to

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td>10 Hours</td>
<td></td>
</tr>
<tr>
<td>Module -2</td>
<td>10 Hours</td>
<td></td>
</tr>
<tr>
<td>Module -3</td>
<td>10 Hours</td>
<td></td>
</tr>
</tbody>
</table>
Course Outcomes: After studying this course, students will be able to:

Graduate Attributes (as per NBA)

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carries 16 marks.
- There will be TWO full questions (with maximum of FOUR sub-questions) from each module.
- Each full question will have sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

Reference Books:
IV SEMESTER

B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester – IV

SIGNAL CONDITIONING AND DATA ACQUISITION CIRCUITS
(Common to EI, BM & ML) [Revised]

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>: 15 EI/BM/ML42</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA Marks</td>
<td>: 20</td>
</tr>
<tr>
<td>Number of Lecture Hours/Week</td>
<td>: 04</td>
</tr>
<tr>
<td>Exam Marks</td>
<td>: 80</td>
</tr>
<tr>
<td>Total Number of Lecture Hours</td>
<td>: 50</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>: 03</td>
</tr>
</tbody>
</table>

Credits – 4

Course Objectives: This course will enable the students to

- Define and describe Op Amp, basic concepts, characteristics and specifications
- Gain knowledge about Linear and nonlinear applications op-amp.
- Design and develop circuits like, amplifiers, filters, Timers to meet industrial requirements.
- Get a firm grasp of basic principles of op-amp.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 Introduction to Operational Amplifiers: Introduction, Block schematic of an Op-amp, Power supply connections, Characteristics of an Ideal OP-AMP, Inverting Amplifier, Non-inverting Amplifier, Voltage follower, Differential Amplifier, CMRR. (Relevant problems).</td>
<td>10 Hours</td>
<td>L1,L2, L3,L4</td>
</tr>
</tbody>
</table>

Operational Amplifier Characteristics: DC characteristics – Input bias current, Input offset current, Input offset voltage, Total output offset voltage, Thermal drift. AC characteristics – Frequency response, Slew rate, PSRR.

Basic op-amp applications – Scale changer/Inverter.
Summing amplifier: Inverting summing amplifier, Non-inverting Summing amplifier, Subtractor, Instrumentation Amplifier. (Relevant problems).

Comparator and waveforms generator: Comparator, Regenerative comparator (Schmitt Trigger), Astable mutivibrator, Monostable

10 Hours L1,L2, L3,L4
multivibrator and Triangular waveform generator. Phase shift oscillator, Wien bridge oscillator. (Relevant problems).

<table>
<thead>
<tr>
<th>Module -3</th>
<th>Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators, 723 general purpose regulators, switching regulator. Active filters: First and Second order LPF, First and Second orders HPF, Band Pass Filters, Band Reject filters. (Design examples).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -5</td>
<td>Data Acquisition Systems: Types of instrumentation systems, Components of analog data acquisition system, Digital data acquisition system, Use of recorders in digital systems, Digital recording systems. Data Converters: Digital to Analog Converters: Basic DAC techniques, Weighted Resistor DAC, R – 2R Ladder DAC, DAC 0800 (Data sheet: Features and description only). Analog to Digital Converters: Functional diagram of ADC, Flash ADC, Counter type ADC, Successive approximation ADC, Dual slope ADC. ADC 0809 (Data sheet: Features, specifications and description only), DAC/ADC specifications.</td>
</tr>
<tr>
<td>Course Outcomes: After studying this course, students will able to: 1. Understand the basic principles and operation of op-amp. 2. Design and develop circuits to meet the practical applications 3. Implement and integrate the op-amp circuits in electronic gadgets. Graduate Attributes (as per NBA) - Engineering knowledge - Problem analysis - Design & development of solutions - Investigation of Complex Problem Question Paper Pattern: - The question paper will have TEN questions.</td>
<td></td>
</tr>
</tbody>
</table>
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - IV

EMBEDDED CONTROLLERS
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Number of Lecture Hours/Week</th>
<th>Total number of lecture hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML 43</td>
<td>: 20</td>
<td>: 80</td>
<td>: 04</td>
<td>: 50</td>
<td>- 4</td>
</tr>
</tbody>
</table>

Course Objectives:
This course enables students to understand:
- Basics of Microprocessor and Microcontroller
- 8051 Microcontroller architecture and Pin description
- 8051 Addressing modes and instruction set
- Programming of on-chip peripherals in 8051
- Design and develop applications using 8051 Assembly language and C program.
- MSP 430 Microcontroller architecture
- On-chip peripherals and program using Assembly language and C.

Revised Bloom’s Taxonomy Levels:

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT)Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 Microprocessor and Microcontrollers: Introduction: Microprocessor and Microcontroller</td>
<td>10 Hours</td>
<td>L1, L2</td>
</tr>
<tr>
<td>Microprocessor and Microcontroller:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module -2 Addressing modes directives instruction set of 8051 Microcontroller	10 Hours	L1, L2
Addressing modes directives instruction set of 8051 Microcontroller		
Immediate and Register addressing modes. Accessing memory using various addressing modes. Accessing memory using various addressing modes. Bit addressing for I/o and RAM 8051 data types and directives. Jump Loop and CALL Instructions Arithmetic and Logic Instructions and programming I/o port programming. Assembly Language programs using various Instructions.		
Module -3
8051 programming in C and interfacing. Data types and time delay in 8051 C, I/o programming, Logic operation, data conversion programs, accessing Code ROM Space, data serialization. 8051 interfacing to LCD and key board, DAC, stepper motor, DC Motor, Parallel and serial ADC. Elevator.

10 Hours L2,L3,L4

Module -4
Timer/ Counter, Serial communication and Interrupts in 8051. Programming 8051 timer/ counter, programming timer 0 and 1 in 8051 C, Basics of serial communication, 8051 connections to RS-232. 8051 serial port programming in assembly and C. 8051 Interrupts, Programming Timer Interrupts, External hardware Interrupts and serial communication Interrupts. Interrupts priority & Interrupt programming in C.

10 Hours L2,L3,L4,L5

Module -5

10 Hours L1,L2,L3

Course Outcomes: After studying this course, Student will be able to:
- Learn architecture of 8051 and MSP 430.
- Learn programming skills using Assembly language and C
- Design and interfacing of microcontroller based embedded systems.
- Build projects

Graduate Attributes (as per NBA)
- Engineering Knowledge
- Problem Analysis
- Design and Development of solutions
- Modern Tool usage

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:
Reference Books:

B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - IV

CONTROL SYSTEMS
(Common to EI & BM)

Subject Code : 15 EI/BM 44
IA Marks : 20
Number of Lecture Hours/Week : 04
Exam Marks : 80
Total Number of Lecture Hours : 50
Exam Hours : 03

Credits - 4

Course Objectives: This course will enable the students to
- Understand the basic concepts & mathematical modeling of systems
- Draw block diagram & reduction for a given system
- Obtain Transfer functions by reduction and Signal Flow graph techniques.
- Analyze the system response in time and frequency domain
- Understand and Design of control systems using state space analysis

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1 Modeling of Systems and Block diagram: Introduction to Control Systems, Types of Control Systems, with examples. Concept of mathematical modeling of physical systems- Mechanical, Translational (Mechanical accelerometer, systems excluded), and Rotational systems, Analogous systems based on force voltage analogy and force current analogy. Introduction to Block diagram algebra. Numerical problems on all topics.</td>
<td>10 Hours</td>
<td>L1, L2, L3, L4</td>
</tr>
</tbody>
</table>
Construction of root loci. Stability analysis using Root locus Technique Numerical problems on all topics.

Module -4
Frequency domain Analysis: Introduction to frequency domain analysis, Correlation between time & frequency response, Bode plots. Numerical problems on all topics.
Polar Plot: Introduction to Polar plot and Nyquist plots, Nyquist stability criterion. Stability analysis using Polar plot. Numerical problems on all topics.

<table>
<thead>
<tr>
<th>Module -5</th>
<th>10 Hours</th>
<th>L2, L3, L4, L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>State space Analysis:</td>
<td>10 Hours</td>
<td>L2, L3, L4, L5</td>
</tr>
</tbody>
</table>
| Concept of state, state variables and state model. State diagrams and State models for Linear continuous-time systems (Electrical systems): State space representation using Physical and Phase variables. Derivation of transfer functions from the state model. Numerical problems on all topics.
Solution of state equations: Solutions of homogeneous and Non-homogeneous state equations. Properties of state transition matrix, computation of state transition matrix by matrix exponential and Laplace transform method. Numerical problems |

Course Outcomes: After studying this course, students will able to:
- Apply modeling knowledge in implementation physical systems.
- Understand the reduction of block diagram & analyze using Signal flow graph.
- Comment on performance of a system by evaluating various parameters.
- Model a system by applying the concept of State Space analysis
- Design and develop portable control systems

Graduate Attributes (as per NBA)
- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Investigation of Complex Problem

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Books:
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number of Lecture Hours/Week</th>
<th>Exam Marks</th>
<th>Total Number of Lecture Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15EI45</td>
<td>20</td>
<td>04</td>
<td>80</td>
<td>50</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits - 4

Course Objectives:
- To discuss the principle, design and working of transducers/sensors for the measurement of temperature, flow, vibration, density, viscosity, humidity and moisture.
- To provide the basic knowledge in selection of appropriate transducers/sensors for the measurement of above parameters based on their specifications, advantages and limitations.

Revised Bloom’s Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td>10 Hours</td>
<td>L1, L2, L3, L4</td>
</tr>
<tr>
<td>Measurement of Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Methods of Temperature Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module -2</td>
<td>10 Hours</td>
<td>L1, L2, L3, L4</td>
</tr>
<tr>
<td>Flow Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module -3</td>
<td>10 Hours</td>
<td>L1, L2, L3,</td>
</tr>
</tbody>
</table>

B.E. Electronics and Instrumentation Engineering (EI)

Choice Based Credit System (CBCS)

Semester - IV

PROCESS INSTRUMENTATION

Approved

Measurement of Density: Definition & units of density and specific gravity, Liquid density measurement – Ball type, capacitance type, displacement type, hydrometers, oscillating coriolis, radiation type, sound velocity type. Gas density measurement – displacement type, electromagnetic suspension type.

<table>
<thead>
<tr>
<th>Module -4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity Measurement: Definition and units, selection of viscometer, viscometer applications. Laboratory Viscometers – Capillary, capillary extrusion, Saybolt viscometer, Falling ball, Rotational viscometer, Cone & plate viscometer. Industrial Viscometers - differential pressure continuous capillary viscometer, falling piston viscometer, single and two float viscometer, cone and plate plastometer, rotational viscometer, vibrating reed viscometer. Turbidity: Definition, transmission type turbidity meter, light scattering turbidity meter.</td>
<td>L4</td>
</tr>
<tr>
<td>Module -5</td>
<td></td>
</tr>
<tr>
<td>Humidity Measurement: Definition and terminologies, dry and wet bulb psychrometers (Sling psychrometer), hair hygrometers, thin film capacitance humidity sensor, dew-point hygrometers, electrolytic hygrometers. Moisture Measurement: Definition and terminologies. Measurement of moisture in gases and liquids – Electrolytic hygrometer, capacitance hygrometer, impedance hygrometer, piezoelectric hygrometer, infrared absorption hygrometer. Measurement of moisture in solids – Nuclear moisture gauge, infrared absorption moisture gauge, capacitance moisture gauge, conductance moisture gauge.</td>
<td>L1, L2, L3, L4</td>
</tr>
</tbody>
</table>

Course Outcomes: After studying this course, students will able to:
- Explain the principle, construction/design and analyze the transducers/sensors for the measurement of temperature, flow, vibration, density, viscosity, humidity and moisture.
- Select the appropriate transducers/sensors based on the needs of the process.
- Install and analyze the transducers/sensors for the measurement of above parameters.

Graduate Attributes (as per NBA)
- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Engineer and society
- Environment & sustainability
- Lifelong learning
Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Subject: Scientific and Analytical Instrumentation

Course Objectives:
- To introduce the basic concept of qualitative and quantitative analysis of a given sample.
- To impart various spectroscopic techniques and its instrumentation.
- To impart the concept of separation science and its application.
- To impart methods of industrial analyzers and its application.

Revised Bloom’s Taxonomy Levels:

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
</table>
| **Module -1**
An introduction to instrumental methods: Terms associated with Chemical analysis, Classification of instrumental techniques, A review of important consideration in analytical methods, Basic functions of instrumentation, Nature of EM radiation, EM spectrum. Atomic energy levels, Molecular electronic energy levels, vibrational energy levels, Fundamental Levels of photometry, IR Spectroscopy: Basic Components of IR Spectrophotometers, Fourier Transform IR Spectroscopy | 10 Hours | L1, L2 |
| **Module -2**
UV and visible Spectrometers – instrumentation: Radiation Sources, Wavelength selection, Detector, Readout modules, Instruments for absorption photometry | 10 Hours | L1, L2 |
| **Module -3**
Flame emission and atomic absorption spectroscopy: Introduction, Instrumentation for flame spectrometric methods, Flame emission spectrometry, atomic absorption spectrometry, Atomic fluorescence spectrometry, Interferences associated with Flames & furnaces, applications, comparison of FES and AAS | 10 Hours | L1, L2 |
Module -4
Gas Chromatography: Chromatograph, Basics parts of a chromatograph, Methods of measurements of peak areas, HPLC: HPLC Instrumentation, Mobile –phase delivery system sample introduction, separation of columns, Detectors – Ultraviolet Photometers & Spectrophotometers, electro chemicals detector (amperometric detector), Differential refractometers

<table>
<thead>
<tr>
<th>10 Hours</th>
<th>L1, L2, L3</th>
</tr>
</thead>
</table>

Module -5
Blood analyzer: Introduction, Blood pH measurements, measurement of blood Pco2, Po2 , A Complete blood gas analyzer. Air pollution monitoring instruments Carbon monoxide, Sulphur dioxide, Nitrogen oxides, Hydrocarbons Ozone, automated wet chemical air analysis, water pollution monitoring instruments.

<table>
<thead>
<tr>
<th>10 Hours</th>
<th>L1, L2, L3, L4</th>
</tr>
</thead>
</table>

Course Outcomes:
1. The students get well versed with the principle, construction and working of various analytical instrumentation.
2. Students get detailed information about the application of analytical techniques in medicine, Industry, etc.

Graduate Attributes (as per NBA)
- Engineering Knowledge
- Problem Analysis
- Life-long Learning

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

Reference Books:
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number of Practical Hours/Week</th>
<th>Exam Marks</th>
<th>Total Number of Practical Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 EI/BM/ML L47</td>
<td>20</td>
<td>03</td>
<td>80</td>
<td>42</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits - 2

Course Objectives:
This laboratory course enables students to:
- Write 8051 Assembly language and C programs for 8051 and MSP430.
- Interface hardware modules to Microcontroller board.
- Develop applications based on Microcontroller 8051 and MSP430.

Revised Bloom’s Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

<table>
<thead>
<tr>
<th>Laboratory Experiments</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software program using 8051 µc</td>
<td>L2, L3, L4</td>
</tr>
<tr>
<td>Simple Assembly Language;</td>
<td></td>
</tr>
<tr>
<td>1. Program using 8051 in Block, Move, Exchange.</td>
<td></td>
</tr>
<tr>
<td>2. Program in sorting, finding largest and smallest element in an array.</td>
<td></td>
</tr>
<tr>
<td>3. Counters ---> For Hex and BCD up/ down count.</td>
<td></td>
</tr>
<tr>
<td>4. Boolean and Logical Instructions. (Bit Manipulation).</td>
<td></td>
</tr>
<tr>
<td>5. Subroutines using CALL and RETURN instructions.</td>
<td></td>
</tr>
<tr>
<td>6. Code Conversions ---> ASCII to Decimal, Decimal to ASCII, BCD to ASCII</td>
<td></td>
</tr>
<tr>
<td>7. Programs to generate delay, programs using serial port and on chip timer/ counter.</td>
<td></td>
</tr>
</tbody>
</table>

| **Software program using MSP 430 IDE** | L2, L3, L4 |
| 8. Assembly program using MSP 430 for data transfer, Block Move in an array. | |

Hardware programming (using 8051)	L3, L4, L5
9. Stepper motor Interface to 8051 Microcontroller with C Program.	
10. DC Motor Interface to 8051 Microcontroller with C Program	
11. DAC Interface for to generate sine wave, square wave, triangular wave, Ramp wave through 8051Microcontroller with C Program	
13. **ADC Interfacing**	
Course Outcomes: After the completion of this Laboratory course, students will be able to:

- Get hands-on exposure in 8051 and MSB 430 platform.
- Enhance programming skills using Assembly language and C.
- Design and interfacing of microcontroller based embedded systems.
- Build projects

Graduate Attributes (as per NBA)
- Engineering Knowledge
- Problem Analysis
- Design and Development of solutions
- Modern Tool usage
- Individual and Team work

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:
B.E. Electronics and Instrumentation Engineering (EI)
Choice Based Credit System (CBCS)
Semester - IV

INSTRUMENTATION AND MEASUREMENT- LAB

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>15EIL48</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of practical Hours/Week</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of practical Hours</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Credits - 2

Course Objectives: This Lab course will enable the students to
- Impart the working principle of sensors and transducer
- Testing the response and plot the characteristics of different transducers
- Interpret and analyze experimental results with theoretical concepts.
- Calibrate the sensors/transducers
- Design the signal conditioning circuits and to make the transducer output compatible to interface with other devices
- Study and interpret data sheets of different transducers to select the suitable transducer for particular application and safe operation.

LIST OF EXPERIMENTS

1. Displacement measurement using LVDT
2. Temperature measurement using RTD, Thermistor and Thermocouple, and finding their sensitivity.
3. Temperature measurement using AD590 / LM34.
5. Measurement of unknown resistance by Wheatstone bridge & finding the sensitivity of the bridge.
8. Measurement of inductance and internal resistance of a choke by three voltmeter method.
11. Characteristics of Load cell and Cantilever beam using Strain gauge (Quarter, Half and Full bridge)
12. Characteristics of potentiometric transducer

Course Outcomes: After studying this course, students will able to:
- Analyze the response and plot the characteristics of temperature measurement transducers such as RTD, Thermistor, and Thermocouple & AD590.
• Analyze the response and plot the characteristics of displacement measuring transducers such as LVDT and Potentiometric transducer.
• Analyze the response and plot the characteristics of strain gauge type load cell.
• Analyze the response and plot the characteristics of pressure transducer.
• Measure unknown values of resistance, capacitance and Inductance using different bridges.
• Design, build and test the circuits for practical applications

Graduate Attributes (as per NBA)
• Engineering Knowledge.
• Problem Analysis.
• Design / development of solutions (partly)
• Interpretation of data

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:
4. Process Measurement by Bela G. Liptak