ENGINEERING MATHEMATICS III [CORE]						
[As	[As per Choice Based Credit System (CBCS) Scheme]					
	SEMESTER-III					
Subject Code	CUMMON IO ALL BRANCHES					
Subject Code	: 15MA 151	IA Marks	: 20			
No. of Lecture	:04	Exam Marks	: 80			
Total No. of Lostuno	. 50	Even Hours	. 02			
Hours	: 50	Exam nours	: 03			
110013	CRFI					
Course Objectives: Th	uis course enables stude	ents to				
			Revised Bloom's			
Mod	lules	Teaching	Taxonomy			
		Hours	(RBT)			
Module-1			Level			
Module-2						
M. 1. 1. 2						
Niodule-3						
Module-4						
Module-5						
Course Outcomes: At	the and of the course a	tudanta ara abla				
Course Outcomes. At	the end of the course's	indents are able				
Graduate Attributes (as per NBA)					
Question paper patter	:n:					
• The question pa	per will have Ten ques	stions in total				
• Each full questi	on consists of 16 mark	S.				
• There will be 2 full questions (with a maximum of four sub questions) from each						
Each full quest	module.					
 Each run questi The students with 	ill have to answer 5 ful	l questions selecting or	the full question from			
each module.		r questions, selecting of	le fuil question from			
Text Books:						
Reference Books:						

MOMENTUM TRANSFER

Sub Code : 15CH32 Hrs/Week : 04 Total Hrs : 50 Credits: 04 IA Marks : 20 Exam Hours: 03 Exam Marks : 80

COURSE OBJECTIVES: The students will

- 1. Understand concepts on nature of fluids, pressure concepts and measurement of pressure by various experimental methods and by mathematical relations and enhancement of problem solving skills.
- 2. Learn detailed explanation on types of fluids, stress and velocity relations, type of fluid flow and boundary layer relations.
- 3. Understand relationship between kinetic energy, potential energy, internal energy and work complex flow systems using Bernoulli's equation with application to industrial problems.
- 4. Understand clear concepts on Flow of incompressible fluids in conduits and thin layers and friction factor variations with velocity and friction losses using Bernoulli's Equations and they will be demonstrated experimentally.
- 5. Study Flow of compressible fluids, Dimensional analysis, Dimensional homogeneity and various dimensionless numbers and their applications.
- **6.** Understand principles and working of various types of pumps, transportation and metering of fluids using various experimental techniques and applications to industry.

Module 1	Content	Contact	Blooms
		Hours	Taxonomy
FLUID STA	ATICS AND ITS APPLCATIONS:	10 Hrs.	L-1, L-2
Concept of u	nit operations, Concept of momentum transfer, Nature of		
fluids and pr	essure concept, variation of pressure with height –		
hydrostatic e	quilibrium, Barometric equation, Measurement of fluid		
pressure – m	anometers, Continuous gravity decanter, Centrifugal		
decanter.			
FLUID FLO)W PHENOMENA:		L-1, L2
Type of fluid	ls – shear stress and velocity gradient relation, Newtonian		
and non- Ne	wtonian fluids, Viscosity of gases and liquids. Types of		
flow – lamin	ar and turbulent flow, Reynolds stress, Eddy viscosity.		
Flow in bound	ndary layers, Reynolds number, and Boundary layer		
separation a	nd wake formation.		

Module 2	Content	Contact	Blooms
		Hours	Taxonomy
BASIC EQ	UATIONS OF FLUID FLOW:	10 Hrs.	L-2, L-3
Average vel	ocity, Mass velocity, Continuity equation, Euler and		
Bernoulli equations Modified equations for real fluids with correction			
factors, Pump work in Bernoulli equation, Angular momentum			
equation.			
FLOW OF	INCOMPRESSIBLE FLUIDS IN CONDUITS AND		L-2, L-3
THIN LAY	ERS:		
Laminar flow	w through circular and non-circular conduits, Hagen		

Poiseuille ec	uation, Laminar flow of non-Newtonian liquids. Turbulent		
flow			
Module 3	Content	Contact	Blooms
		Hours	Taxonomy
FLOW OF	INCOMPRESSIBLE FLUIDS IN CONDUITS AND	10 Hrs	L-2, L-3
THIN LAY	ERS :(Contd)		
Friction factor chart, friction from changes in velocity or direction,			
Form friction losses in Bernoulli equation, Flow of fluids in thin layers			
FLOW OF	COMPRESSEBLE FLUIDS:		L-2, L-3
Continuity e	quation, Concept of Mach number, Total energy balance,		
Velocity of sound, Ideal gas equations, Flow through variable-area			
conduits, Adiabatic frictional flow, Isothermal frictional flow			
(elementary	treatment only).		

Module 4	Content	Contact	Blooms
		Hours	Taxonomy
TRANSPO	RTATION AND METERING OF FLUIDS:	10Hrs	L-2, L-3
Pipes, Fittin	gs and valves, Measurement of fluid and gas flow rates by		
orifice, vent	uri & rotameters. Pitot tube. Elementary concept of target		
meter, vorte	x-shedding meters, turbine meters, positive displacement		
meters, mag	netic meters, coriolis meters and thermal meters, Flow		
through ope	n channel-weirs and notches.		

Module 5	Content	Contact	Blooms
		Hours	Taxonomy
PUMPS:		10 Hrs.	L-2, L-3
Performance and Characteristics of pumps-positive displacement and			
centrifugal p	pumps, Fans, compressors, and blowers.		
DIMENSI	DNAL ANALYSIS:		L-2, L-3
Dimensiona	l homogeneity, Rayleigh's and Buckingham's Π- methods,		
Significance	e of different dimensionless numbers, Elementary treatment		
of similitude	e between model and prototype.		

COURSE OUTCOMES: On completion of this course the students will be able to

- 1. Analyze different types of fluids and they will be able to measure pressure difference for flow of fluids.
- 2. Understand and analyze the relationship between kinetic and potential energy, internal energy, work, and heat in complex flow systems using Bernoulli's equation, perform macroscopic energy balances.
- 3. Analyze and calculate friction factor for different types of flow in various types of constructions.
- 4. Develop mathematical relations using Dimensional analysis by Rayleigh and Buckingham $-\pi$ method.

GRADUATE ATTRIBUTES:

• Design and Development of Solutions.

• Problem Analysis

QUESTION PAPER PATTERN:

• The question paper will have ten questions. Each full is for 16 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module.

TEXT BOOKS:

- McCabe, W.L., et.al., "Unit Operations in Chemical Engineering", 5th edn., Mc Graw Hill, New York 1993
- 2. Kumar K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (p) Ltd., New Delhi, 3rd edn. 1984
- 3. Dr R K Bansal., "A Text Book of Fluid Mechanics" 1st edn., Laxmi Publications (P) Ltd., New Delhi. 2005.

REFERENCE BOOKS:

- 5. Coulson J.H. and Richardson J.F., **"Chemical Engineering"**, Vol-I, 5th edn., Asian Books (p) Ltd., New Delhi, 1998
- 6. Badger W.L. and Banchero J.T., **"Introduction to Chemical Engineering"**, Tata McGraw Hill, New York, 1997

CHEMICAL PROCESS CALCULATIONS

Sub Code : 15CH33 Hrs/Week : 04 Total Hrs : 50 Credits: 04 IA Marks : 20 Exam Hours : 03 Exam Marks : 80

COURSE OBJECTIVES: The students will

- 1. Learn basic laws about the behavior of gases, liquids and solids and some basic mathematical tools.
- 2. Understand systematic problem solving skills, enhance confidence, and generate careful work habits.
- 3. Learn what material balances are, how to formulate and apply them, how to solve them.
- 4. Learn what energy balances are, and how to apply them and finally, to learn how to deal with the complexity of big problems

Module 1	Content		Blooms
		Hours	Taxonomy
UNITS AN	D DIMENSIONS:	10Hrs	L-1, L-2.
Fundamental	and derived units, Conversion, Dimensional consistency of		
equations, conversions of equations.			
BASIC CHEMICAL CALCULATIONS:			
Concept of mole, mole fraction, Compositions of mixtures of solids, liquids			
and gases, Concept of Normality, Molarity, Molality, ppm, Use of semi-log,			
log-log, trian	gular graphs, Ideal gas law calculations.		

Module 2	Content	Contact	Blooms
		Hours	Taxonomy

MATERIAI General mat steady state crystallizatio	10Hrs	L-2, L3.	
Module 3	Content	Contact	Blooms
		Hours	Taxonomy
MATERIAI	BALANCE WITHOUT REACTION:	10Hrs	L-2, L3.
Drying, mixing and evaporation, Elementary treatment of material balances involving bypass, recycle and purging, Psychrometry, Humidification and dehumidification.			
Module 4	Content	Contact	Blooms
			Taxonomy
STEADY STATE MATERIAL BALANCE WITH REACTION: Principles of Stoichiometry, Concept of limiting, excess reactants and inerts, fractional and percentage conversion, fractional yield and percentage yield, selectivity, related problems.			L-2, L3.

Module 5	Content	Contact	Blooms
		Hours	Taxonomy
ENERGY	BALANCE:	10Hrs	L-2, L3.
General stead	dy state energy balance equation, Heat capacity, Enthalpy, Heat		
of formation,	Heat of reaction, Heat of combustion and Calorific values. Heat		
of solution, l	Heat of mixing, Heat of crystallization, determination of ΔH_R at		
standard and	d elevated temperatures, Theoretical flame temperature and		
adiabatic flar	ne temperature.		
adiabatic flar	ne temperature.		

COURSE OUTCOMES: On completion of this course the student will have

- 1. Clear idea of various types of unit systems and they will be able to convert units from one form of the unit to other.
- 2. Sound strategy for solving material and energy balance problems.
- 3. Adopt the tools learned from the course from the numerical problems which contain more than two unit operations.
- 4. Develop mathematical relations for mass balance and energy balances for any processes.

GRADUATE ATTRIBUTES:

- Design and Development of Solutions.
- Problem Analysis
- Computational Knowledge.

QUESTION PAPER PATTERN:

• The question paper will have ten questions. Each full is for 16 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module.

NOTE: QUESTION PAPER TO CONTAIN AT LEAST 30% THEORY

TEXT BOOKS:

- 1. Bhatt B.I. and Vora S.M., "Stoichiometry (SI Units)", Third edition, 1996, Tata McGraw Hill Publishing Ltd., New Delhi, 1996
- 2. Hougen O.A., Watson K.M. and Ragatz R.A., "Chemical Process Principles Part I"
- 3. **"Material and Energy balances"**, Second edition, CBS publishers and distributors, New Delhi, 1995

REFERENCE BOOK:

1. Himmelblau D.M., **'Basic principle and Calculations in Chemical Engineering'**, 6th edn, Prentice Hall of India, New Delhi,1997

INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS [D.C]					
[AS PER CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTED III					
Subject Code	: 15PC34	IA Marks		: 20	
No. of Lecture	: 04	Exam Marks		: 80	
Hours/Week					
Total No. of Lecture Hours	: 50	Exam Hours		: 03	
	CRED	ITS- 04			
Course Objectives: The The various modern a Radiochemical, Electro important topics are ta involved in the determit theoretical aspects, the	nis course enables studer analytical techniques lik ophoretic, Polarography, aught to enable the stu ination of different bulk basic practical knowled	tts to: te IR spectrosco different chrom idents to unders drugs and their ge relevant to the	opy, AAS natograph tand and formulati e analysis	Flame photometry, ic methods and other apply the principles on. In addition to the is also imparted.	
	Modules		Teachin Hours	Revised Bloom's Taxonomy (RBT) Level	
Module-1					
General Introduction To SpectroscopyDefineSpectroscopy, Types of spectroscopy, Absorption spectrum,Emission spectra, Wave length and Wave number,Electromagnetic radiation, Visible spectrum, Stokes'sshift, Hypochromicity, transmittance.Introduction, basic principles and instrumentation -Infrared Spectroscopy, Flame Photometry, AtomicAbsorption Spectroscopy and Mass Spectrometry			10	L1, L2, L3	
Module-2			I		
Radiochemical Techniques – Define radioactivity, half life of radioactive element, radioactive isotopes, Induced radioactivity, GM Counter, Gas ionization detector, Scintillation counter, Quenching, Radiodating, Radioactive tracer, Autoradiography, Radioimmuno assay.					
Factors affecting elect	ctrophoresis, Electrophoretic mobility.	– free solution pretic mobility,	10	L1, L2, L3	

Module-3

Polarography: Principles of polarographic measurements, polarograms, Description and working of dropping mercury electrode. Current and concentrations relationship. Supporting electrolyte. Limiting current, half wave potential. Factors affecting half wave potential. Migration current, Residual current and diffusion current. Modes of operation. Rapid scan polarography, differential pulse polarography, sinusoidal a.c. polarography. Applications of polarography-Identification and determination of concentration of analyte.	10	L1, L2, L3
Module-4		
Introduction to Chromatography: Classification - Theory - distribution coefficient, rate of travel, retention time, retention volume, adjusted retention volume, specific retention volume, column capacity, separation number, peak capacity, shapes of chromatic peak, column efficiency, resolution, optimization of column performance, Chromatogram, Void volume. Thin Layer Chromatography: Stationary phase, mobile phase, sample application, development techniques – evaluation and documentation, advantages and disadvantages of TLC.	10	L1, L2, L3
Module-5		
Gas Chromatography: Principle, carrier gas, stationery phase, instrumentation, sample injection, column detectors (TCD, FID, ECD), effect of temperature on retention, qualitative and quantitative analysis. High Performance Liquid Chromatography: Principle, instrumentation, column, sample injection, detectors (absorbance, refractive index, electrochemical), mobile phase selection, ion pair chromatography.	10	L1, L2, L3
Course Outcomes: At the end of the course students are able		
 To apply their knowledge in developing the new meth validate the procedures. The appreciable knowledge will be gained by the stude Techniques and can apply the theories involved in the <i>A</i> and their formulations. 	ods for th ents in the Analysis of	e determination and Modern Analytical f various bulk drugs
 Graduate Attributes (as per NBA) Engineering Knowledge Problem Analysis Design/development of solutions (Partly) Intermutation of data 		

• Interpretation of data.

Question paper pattern:

- The question paper will have Ten questions in total
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. **Spectrometric Identification of organic compounds,** R.M. Silverstein and W.P. Webster, 6th Edition, Wiley & Sons, 1999.
- 2. **Instrumental Methods of Analysis,** H.H.Willard, L.L. Merritt and J.A. Dean and F. A. Settle, CBS Publishers, 7th Edition, 1988.

Reference Books:

- 1. Instrumental methods of Chemical Analysis, G.W. Ewing, 5th Edition, McGraw-Hill, New York, 1988.
- 2. **Principles of Instrumental Analysis,** Skoog, D.A, S.J. Holler, T.A. Nilman, 5th Edn., Saunders college publishing, London, 1998.
- 3. **Instrumental Methods of Chemical Analysis,** Chatwal Anand, 3rd Edition ,Himalaya Publishing House,1986.
- 4. **Principles of Electroanalytical Methods,** T. Riley and C. Tomilinsom, John Wiley and Sons, 2008.
- 5. **Instrumental Methods of Chemical Analysis,** K. Sharma, Goel Publishing House Meerut 2000.

INTRODUCTION TO PETROCHEMICAL ENGINEERING [D.C]							
[AS PER CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME]							
	SEMESTER-III						
Subject Code	: 15PC35	IA	: 20				
No. of Lecture	: 04	Exam	: 80				
Hours/Week		Marks					
Total No. of Lecture	: 50	Exam	:03				
Hours		Hours					
CREDITS- 04							
Course Objectives: Th	is course will enable students to						
Fundamental an	d methodologies in the petroleum refining	g processes					
• Concepts of pet	rochemicals, Testing methods, Origin of o	il and gas a	nd Oil recovery				
· · ·			Revised Bloom's				
Modules			Taxonomy				
			(RBT)				
			Level				
Module-1		•					
Introduction to	Petrochemical Engineering:						
History and Overview	v of petrochemical industry, Role of	10	L1, L2				
Petrochemical Enginee	r. Major companies in India & abroad.						
Prospects & Future.	Composition of crude oil, Physical						
properties of oil. Pet	roleum Materials - Native Materials,						
Manufactured Material	s, Derived Materials.						
Module-2							
Origin of oil & g	as – Biogenic & Abiogenic theory,						
Occurrence, Migration	& accumulation of oil & gas. Basic	10	L1, L2				
Concepts of Petroleun	Geology. Rocks and fluid properties:		,				
Physical properties of	oil bearing rocks, Carbonate reservoirs						
Fracture, Anticlines et	Fracture. Anticlines etc. Type of reserves fluids.						
Module-3							
Petroleum Products	and Test Methods: Crude oil Analysis.						
Different types of fuel	s & their test methods (Domestic fuels,	10	L1, L2				
Automotive fuels, Av	iation fuel, Furnace fuels, Lubricating	10	,				
Oil and Miscellaneous							
Madada A	,						
Module-4	methoda Coolegical and Coordinated						
Oll & gas exploration	methods - Geological and Geophysical	10	1110				
methods. Drining: Int	10	L1, L2					
Oil Grinng, Drinng rig	Well completion fundamentals						
On Field development	, well completion fundamentals.						
Module-5							
Reservoir drives &							
Secondary oil recover	10	L1, L2					
Chemical, Thermal & Others Recovery of Heavy Oil & Tar							
Sand Bitumen: Oil Mining & Non Mining Methods. Products							
and Product Quality.							

Course Outcomes: At the end of the course students are able understand the unit process involved in the petroleum refining process.

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Design/development of solutions (Partly)
- Interpretation of data.

Question paper pattern:

- The question paper will have Ten questions in total
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. James G. Speight "The Chemistry and Technology of Petroleum", 4th edition, CD&W Inc. Laramie, Wyoming 2007.

2. Uttam Ray Chaudhuri "Fundamentals of Petroleum and Petrochemical Engineering", CRC Press, 2011.

3. B.K Bhaskar Rao "A textbook on Petrochemicals", 2/e, publishers-Delhi 1998

Reference Books:

- 1. M.A Mian, "Petroleum processing", handbook for practicing engineer.
- 2. F. Abdulin, "Production of oil gas" Mir publishers, Moscow.
- 3. B.G. Deshpande "The world of petroleum", Wiley Eastern Industry.

4. Richard A. Dawe "Modern petroleum technology" volume 1 sixth edition john wiley & sons limited, New York.

FUN	FUNDAMENTALS OF PETROLEUM GEOLOGY [FC]						
[AS PER CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTER-III							
Subject Code	: 15PC36	IA	: 20				
No. of Lecture Hours/Week	: 04	Exam Marks	: 80				
Total No. of Lecture	: 50	Exam	:03				
Hours		Hours					
CREDITS- 04							
 Course Objectives: This course enables students to Have basic understanding of broad array of tools used in the search for and production of hydrocarbon reserves Learn the principles of mapping a subsurface reservoir and estimating the volumetric. 							
Modules		Teaching Hours	Bloom's Taxonomy (RBT) Level				
Module-1							
Introduction to earth science - Origin of earth. Nature and properties of minerals and rocks. Sedimentation and sedimentary environment. Stratigraphy and geological time scale. Introduction of plate tectonics.			L1, L2				
Module-2			1				
Sedimentalogy of Petroleum bearing sequences - Sedimentary							
basins. Generation and Migration of Petroleum. Physical and							
Chemical properties of Petroleum.			LI, LZ				
Niodule-3	nt Formation fluids						
- Composition, temperature, pressure and dynamics. Traps and Seals. The Reservoir. Generation and Migration and Distribution.			L1, L2				
Module-4		-					
Exploration Methods Geophysical. Borehold							
geology.			L1, L2, L3				
Non conventional rate	colours recourses and record activities						
 Plastic and solid hydrocarbons. Tar sands. Oil and gas shales. Coal bed methane. Assessment of reserves. 			L1, L2				
Course Outcomes: At the end of the course students are able to understand how geologists conduct the search for petroleum resources through the value chain or the life cycle of a petroleum resource.							

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Design/development of solutions (Partly)
- Interpretation of data.

Question paper pattern:

- The question paper will have Ten questions in total
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Cox, P.A., "The Elements on Earth", Oxford University Press, Oxford 1995.

2. Wilson, M., Igneous Petrogenesis", Unwin Hyman, London 1989.

Reference Books:

1. Boggs, S., "Principles of Sedimentology and Stratigraphy", second edition, Merrill Publishing Co., Toronto, 1995.

2. Krumblein, W.C. and Sloss, L.L., "Stratigraphy and Sedimentation", second edition W.H. Freeman and Co., 1963.

MOMENTUM TRANSFER LAB

Sub Code : 15CHL37 Hrs/Week : 1T + 2L Total Hrs : 42 IA Marks : 20 Exam Hours : 03 Exam Marks : 80

Credits: 02

The experiments are to be conducted on the following topics,

- 1. Friction in circular pipes.
- 2. Friction in non-circular pipes.
- 3. Friction in helical/spiral coils.
- 4. Flow measurement using venturi/orifice meters (incompressible fluid).
- 5. Local velocity measurement using Pitot tube
- 6. Flow over notches
- 7. Hydraulic coefficients open orifice
- 8. Packed bed
- 9. Fluidized bed
- 10. Study of characteristics for centrifugal , Positive displacement pump
- 11. Study of various pipe fittings and their equivalent lengths.
- 12. Compressible fluid flow
- 13. Reynolds apparatus.
- 14. Unsteady flows Emptying of Tank

Note: Minimum of 10 experiments are to be conducted.

	PETROLEUM T	TESTING LAB				
[AS PER CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME]						
SEMESTER-III						
Laboratory Code	: 15PCL38	IA Marks	: 20			
No. of Lecture Hours/Week	1 Hr. Tutorial(Instructions) + 2 hours Laboratory	Exam Marks	: 80			
		Exam Hours	: 03			
	CREDI	TS- 02				
Course Objectives: On completion of the co experimental procedures	etical principles and Revised Bloom's Torrorowy (DBU)					
Minimum o	Level					
1. Testing of petroleum and its analysis						
2. Determination of a						
3.Determination of petroleum & petrol						
4.Determination of petroleum and petro						
5.Determination of products						
6. Determination of n						
7. Determination of c	7. Determination of cloud point and pour point					
8. Carbon residue tes	t					
9. Drop point of great						
10 Sediment content of grease and softening point						
11. Freezing point of aqueous engine coolant solution						
12. Corrosion testing of petroleum oils on metals						
13. Coking tendency of oil						
14. Water separately						
Course Outcomes:						
Students would be able to understand basic principles involved in testing of Petroleum products by different techniques.						
Graduate Attributes (as per NBA)						

- Engineering Knowledge
 Problem Analysis
 Design/development of solutions (Partly)

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pic one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% marks allotted to the procedure part to be made zero.

Reference Books:

1. Modern Petroleum Refining Processes, Bhaskara Rao, 3rd Edition, Oxford & IBH Publication, Reprint, 1999.