Advanced Engineering Mathematics

[As per Choice Based Credit System (CBCS) scheme]

Semester – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Total Number of Lecture Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16ELD11</td>
<td>20</td>
<td>80</td>
<td>50</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits – 04

Course Objectives:
This course will enable students to:

- Acquaint with principles of linear algebra, calculus of variations, probability theory and random process.
- Apply the knowledge of linear algebra, calculus of variations, probability theory and random process in the applications of electronics and communication engineering sciences.

Modules

<table>
<thead>
<tr>
<th>Module -1</th>
<th>Linear Algebra-I</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to vector spaces and sub-spaces, definitions, illustrative examples and simple problems. Linearly independent and dependent vectors-definition and problems. Basis vectors, dimension of a vector space. Linear transformations- definition, properties and problems. Rank-Nullity theorem (without proof). Matrix form of linear transformations-Illustrative examples.</td>
<td>10 Hours (Text 1 & Ref. 1)</td>
<td>L1,L2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -2</th>
<th>Linear Algebra-II</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computation of Eigen values and Eigen vectors of real symmetric matrices-Given’s method. Orthogonal vectors and orthogonal bases. Gram-Schmidt orthogonalization process. QR decomposition, singular value decomposition, least square approximations.</td>
<td>10 Hours (Text 1 & Ref. 1)</td>
<td>L1,L2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Calculus of Variations
Concept of functional-Euler's equation. Functional dependent on first and higher order derivatives, functional on several dependent variables. Isoperimetric problems-variation problems with moving boundaries.

<table>
<thead>
<tr>
<th>Module -4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability Theory</td>
<td></td>
</tr>
<tr>
<td>Review of basic probability theory. Definitions of random variables and probability distributions, probability mass and density functions, expectation, moments, central moments, characteristic functions, probability generating and moment generating functions-illustrations. Binomial, Poisson, Exponential, Gaussian and Rayleigh distributions-examples.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint probability distributions</td>
<td></td>
</tr>
</tbody>
</table>

Course Outcomes: After studying this course, students will be able to:

1. Understand vector spaces, basis, linear transformations and the process of obtaining matrix of linear transformations arising in magnification and rotation of images.
2. Apply the techniques of QR and singular value decomposition for data compression, least square approximation in solving inconsistent linear systems.
3. Utilize the concepts of functionals and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits.
4. Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.
5. Apply the idea of joint probability distributions and the role of parameter-dependent random variables in random process.
Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web links:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://nptel.ac.in/courses.php?disciplineId=111</td>
</tr>
<tr>
<td>2. http://www.class-central.com/subject/math(MOOCs)</td>
</tr>
<tr>
<td>4. www.wolfram.com</td>
</tr>
</tbody>
</table>
DIGITAL VLSI DESIGN
[As per Choice Based Credit System (CBCS) scheme]
SEMESTER –I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number</th>
<th>Exam Marks</th>
<th>Total Number of Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16EVE12</td>
<td>20</td>
<td>04</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>

CREDITS – 04

Course objectives:
This course will enable students to:
1. Explain VLSI Design Methodologies
2. Learn Static and Dynamic operation principles, analysis and design of inverter circuit.
3. Infer state of the art Semiconductors Memory circuits.
4. Outline the comprehensive coverage of Methodologies and Design practice that are used to reduce the Power Dissipation of large scale digital circuits.
5. Illustrate VLSI and ASIC design.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td></td>
<td>L1, L2</td>
</tr>
<tr>
<td>MOS Transistor: The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS Transistor, MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects.</td>
<td>10 Hours</td>
<td></td>
</tr>
<tr>
<td>MOS Inverters-Static Characteristics: Introduction, Resistive-Load Inverter, Inverters with n-Type MOSFET Load.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module -2
MOS Inverters-Static Characteristics

<table>
<thead>
<tr>
<th>Module -3</th>
<th>10 Hours</th>
<th>L2, L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Memories: Introduction, Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), Nonvolatile Memory, Flash Memory, Ferroelectric Random Access Memory (FRAM).</td>
<td>10 Hours</td>
<td>L1, L2, L3</td>
</tr>
</tbody>
</table>

Module -4

BiCMOS Logic Circuits: Introduction, Bipolar Junction Transistor (BJT): Structure and Operation, Dynamic Behavior of BJTs, Basic BiCMOS Circuits: Static Behavior, Switching Delay in BiCMOS Logic Circuits, BiCMOS Applications.

<table>
<thead>
<tr>
<th>Module -4</th>
<th>10 Hours</th>
<th>L1, L2, L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design for Manufacturability: Introduction, Process Variations, Basic Concepts and Definitions, Design of Experiments and Performance Modeling.</td>
<td>10 Hours</td>
<td>L2, L3</td>
</tr>
</tbody>
</table>
Course outcomes:
After studying this course, students will be able to:

1. Analyse issues of On-chip interconnect Modelling and Interconnect delay calculation.
3. Use the Dynamic Logic circuits in state of the art VLSI chips.
4. Study critical issues such as ESD protection, Clock distribution, Clock buffering, and Latch phenomenon
5. Use Bipolar and Bi-CMOS circuits in very high speed design.

Graduate Attributes (as per NBA):
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question Paper Pattern
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub-questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Books:
ADVANCED EMBEDDED SYSTEM

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>CREDITS – 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>16EVE13</td>
<td>20</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture Hours/Week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Lecture Hours</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course objectives: This course will enable students to:

- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Describe the hardware software co-design and firmware design approaches
- Explain the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions.
- Program ARM CORTEX M3 using the various instructions, for different applications

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded System: Embedded vs General computing system, classification, application and purpose of ES. Core of an Embedded System, Memory, Sensors, Actuators, LED, Optocoupler, Communication Interface, Reset circuits, RTC, WDT, Characteristics and Quality Attributes of Embedded Systems (Selected Topics from Ch -1, 2, 3 of Text 1).</td>
<td>10 Hours</td>
<td>L1, L2, L3</td>
</tr>
<tr>
<td>Module -2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Software Co-Design, embedded firmware design approaches, computational models, embedded firmware development languages, Integration and testing of Embedded Hardware and firmware, Components in embedded system development environment (IDE), Files generated during compilation, simulators, emulators and debugging (Selected Topics From Ch-7, 9, 12, 13 of Text 1).</td>
<td>10 Hours</td>
<td>L1, L2, L3, L4</td>
</tr>
</tbody>
</table>
Module -3

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Ch 1, 2, 3 of Text 2).

| 10 Hours | L1, L2, L3 |

Module -4

Instruction Sets: Assembly basics, Instruction list and description, useful instructions, Memory Systems, Memory maps, Cortex M3 implementation overview, pipeline and bus interface (Ch-4, 5, 6 of Text 2).

| 10 Hours | L1, L2, L3, L4 |

Module -5

Exceptions, Nested Vector interrupt controller design, Systick Timer, Cortex-M3 Programming using assembly and C language, CMSIS (Ch-7, 8, 10 of Text 2).

| 10 Hours | L1, L2, L3 |

Course Outcomes:

After studying this course, students will be able to:

- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Explain the hardware software co-design and firmware design approaches.
- Acquire the knowledge of the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions.
- Apply the knowledge gained for Programming ARM CORTEX M3 for different applications.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Book:

LOW POWER VLSI DESIGN
[As per Choice Based Credit System (CBCS) scheme]
SEMESTER –I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>16EVE14</th>
<th>IA Marks</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lecture Hours/Week</td>
<td>04</td>
<td>Exam Marks</td>
<td>80</td>
</tr>
<tr>
<td>Total Number of Lecture Hours</td>
<td>50</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

CREDITS – 04

Course objectives: This course will enable students to:
- Know the basics and advanced techniques in low power design which is a hot topic in today’s market where the power plays a major role.
- Describe the various power reduction and the power estimation methods.
- Explain power dissipation at all layers of design hierarchy from technology, circuit, logic, architecture and system
- Apply State-of-the art approaches to power estimation and reduction.
- Practice the low power techniques using current generation design style and process technology

Modules

<table>
<thead>
<tr>
<th>Module -1</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Need for low power VLSI chips, charging and discharging capacitance, short circuit current in CMOS leakage current, static current, basic principles of low power design, low power figure of merits.</td>
<td>10 Hours (Text1)</td>
<td>L1, L2</td>
</tr>
<tr>
<td>Simulation power analysis: SPICE circuit simulation, discrete transistor modeling and analysis, gate level logic simulation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module -2
Probabilistic power analysis: Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy.

Circuit: Transistor and gate sizing, equivalent pin ordering, network restructuring and reorganization, special latches and flip flops, low power digital cell library, adjustable device threshold voltage.

<table>
<thead>
<tr>
<th>Module -3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
</tr>
<tr>
<td>Low power Clock Distribution:</td>
</tr>
</tbody>
</table>

| 10 Hours | L1, L2, L3 |

<table>
<thead>
<tr>
<th>Module -4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power Architecture & Systems:</td>
</tr>
<tr>
<td>Low power arithmetic components:</td>
</tr>
</tbody>
</table>

| 10 Hours | L1- L4 |

<table>
<thead>
<tr>
<th>Module -5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low power memory design:</td>
</tr>
<tr>
<td>Algorithm & Architectural Level Methodologies:</td>
</tr>
<tr>
<td>Advanced Techniques:</td>
</tr>
</tbody>
</table>

| 10 Hours | L1-L4 |
Course outcomes:
After studying this course, students will be able to:

- Identify the sources of power dissipation in CMOS circuits.
- Perform power analysis using simulation based approaches and probabilistic analysis.
- Use optimization and trade-off techniques that involve power dissipation of digital circuits.
- Make the power design a reality by making power dimension an integral part of the design process.
- Use practical low power design techniques and their analysis at various levels of design abstraction and analyse how these are being captured in the latest design automation environments.

Graduate Attributes (as per NBA):
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Books:
DIGITAL SYSTEM DESIGN USING VERILOG

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>16EVE151</th>
<th>IA Marks</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lecture Hours/Week</td>
<td>03</td>
<td>Exam Marks</td>
<td>80</td>
</tr>
<tr>
<td>Total Number of Lecture Hours</td>
<td>40</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

CREDITS – 03

Course objectives: This course will enable students to:
- Understand the concepts of Verilog Language
- Design the digital systems as an activity in a larger systems design context.
- Study the design and operation of semiconductor memories frequently used in application specific digital system.
- Inspect how effectively IC’s are embedded in package and assembled in PCB’s for different application
- Design and diagnosis of processors and I/O controllers they can be used in embedded systems

Modules

<table>
<thead>
<tr>
<th>Module -1</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Methodology: Digital Systems and Embedded Systems, Binary representation and Circuit Elements, Real-World Circuits, Models, Design Methodology.</td>
<td>8 Hours</td>
<td>L1, L2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -2</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Basics: Unsigned and Signed Integers, Fixed and Floating-point Numbers. Sequential Basics: Storage elements, Counters, Sequential Data paths and Control, Clocked Synchronous Timing Methodology.</td>
<td>8 Hours</td>
<td>L1, L2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -3</th>
<th>Teaching Hours</th>
<th>Revised Bloom's Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memories: Concepts, Memory Types, Error Detection and Correction. Implementation Fabrics: ICs, PLDs, Packaging and Circuit Boards, Interconnection and Signal Integrity.</td>
<td>8 Hours</td>
<td>L1, L2</td>
</tr>
</tbody>
</table>

Module -4
Processor Basics
Embedded Computer Organization, Instruction and Data, Interfacing with memory.

I/O interfacing
I/O devices, I/O controllers, Parallel Buses, Serial Transmission, I/O software.

Module -5

<table>
<thead>
<tr>
<th>Accelerators</th>
<th>Concepts, case study, Verification of accelerators.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Methodology</td>
<td>Design flow, Design optimization, Design for test.</td>
</tr>
</tbody>
</table>

Course outcomes:
After studying this course, students will be able to:

1. Design embedded systems, using small microcontrollers, larger CPUs/DSPs, or hard or soft processor cores.
2. Design & Construct the combinational circuits using discrete gates and programmable logic devices.
3. Describe Verilog model for sequential circuits and test pattern generation
4. Explore the different types of semiconductor memories and their usage for specific chip design
5. Design and synthesis of different types of processor and I/O controllers that are used in embedded system design

Graduate Attributes (as per NBA):
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Reference Book:
NANOELECTRONICS
[As per Choice Based Credit System (CBCS) scheme]
SEMESTER – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
<th>Number of Lecture Hours/Week</th>
<th>Exam Hours</th>
<th>Total Number of Lecture Hours</th>
<th>CREDITS – 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>16EVE152</td>
<td>20</td>
<td>80</td>
<td>03</td>
<td>03</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Course objectives: This course will enable students to:
- Enhance basic engineering science and technological knowledge of nanoelectronics.
- Explain basics of top-down and bottom-up fabrication process, devices and systems.
- Describe technologies involved in modern day electronic devices.
- Appreciate the complexities in scaling down the electronic devices in the future.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching hours</th>
<th>Revised Bloom’s Taxonomy (RBT)</th>
</tr>
</thead>
</table>

Module -1

Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moores law and continued miniaturization. Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giant molecular solids, Free electron models and energy bands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometerlength scale, Fabrication methods: Top down processes, Bottom up processes methods for templating the growth of nanomaterials, ordering of nanosystems (Text 1).

Module -2

Characterization: Classification, Microscopic techniques, Field ion microscopy, scanning probe techniques, diffraction techniques: bulk and surface diffraction techniques (Text 1).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -4</td>
<td>Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells, lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, colloidal quantum dots, self-assembly techniques. Physical processes: modulation doping, quantum hall effect, resonant tunneling, charging effects, ballistic carrier transport, Inter band absorption, intraband absorption, Light emission processes, phonon bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical electrical and structural (Text 1).</td>
<td>8 Hours</td>
<td>L1-L3</td>
</tr>
<tr>
<td>Module -5</td>
<td>Methods of measuring properties: atomic, crystallography, microscopy, spectroscopy (Text 2). Applications: Injection lasers, quantum cascade lasers, single-photon sources, biological tagging, optical memories, coulomb blockade devices, photonic structures, QWIP’s, NEMS, MEMS (Text 1).</td>
<td>8 Hours</td>
<td>L1-L4</td>
</tr>
</tbody>
</table>
Course outcomes:
After studying this course, students will be able to:
- Know the principles behind Nanoscience engineering and Nanoelectronics.
- Apply the knowledge to prepare and characterize nanomaterials.
- Know the effect of particles size on mechanical, thermal, optical and electrical properties of nanomaterials.
- Design the process flow required to fabricate state of the art transistor technology.
- Analyze the requirements for new materials and device structure in the future technologies.

Graduate Attributes (as per NBA):
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Book:
ASIC DESIGN

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Number of Lecture Hours/Week</th>
<th>Exam Marks</th>
<th>Total Number of Lecture Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16EVE153</td>
<td>20</td>
<td>03</td>
<td>80</td>
<td>40</td>
<td>03</td>
</tr>
</tbody>
</table>

CREDITS – 03

Course objectives

This course will enable students to:

- Explain ASIC methodologies and programmable logic cells to implement a function on IC.
- Analyse back-end physical design flow, including partitioning, floor-planning, placement, and routing.
- Gain sufficient theoretical knowledge for carrying out FPGA and ASIC designs.
- Design CAD algorithms and explain how these concepts interact in ASIC design.

Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT)Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to ASICs</td>
<td>08 Hours</td>
<td>L1-L2</td>
</tr>
<tr>
<td>CMOS Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datapath Logic Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplier (Booth encoding)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data path Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module -2</td>
<td>08 Hours</td>
<td>L1-L3</td>
</tr>
<tr>
<td>ASIC Library Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical effort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicting Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical area and logical efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical paths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi stage cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum delay and number of stages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable ASIC Logic Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUX as Boolean function generators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actel ACT: ACT 1, ACT 2 and ACT 3 Logic Modules</td>
<td>08 Hours</td>
<td>L1-L3</td>
</tr>
<tr>
<td>Xilinx LCA: XC3000 CLB, Altera FLEX and MAX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module -3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable ASIC I/O Cells: Xilinx and Altera I/O Block.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-level design entry: Schematic entry: Hierarchical design, Netlist screener.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIC Construction: Physical Design, CAD Tools.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partitioning: Goals and objectives, Constructive Partitioning, Iterative Partitioning Improvement, KL, FM and Look Ahead algorithms.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor planning and placement: Goals and objectives, Floor planning tools, Channel definition, I/O and Power planning and Clock planning.</td>
</tr>
<tr>
<td>Placement: Goals and Objectives, Min-cut Placement algorithm, Iterative Placement Improvement, Physical Design Flow.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Routing, Circuit extraction and DRC.</td>
</tr>
</tbody>
</table>

| **08 Hours** | **L1-L4** |
|-----------------|

Course outcomes:
After studying this course, students will be able to:
1. Describe the concepts of ASIC design methodology, data path elements, logical effort and FPGA architectures.
2. Analyze the design of FPGAs and ASICs suitable for specific tasks, perform design entry and explain the physical design flow.
3. Design data path elements for ASIC cell libraries and compute optimum path delay.
4. Create floorplan including partition and routing with the use of CAD algorithms.

Graduate Attributes (as per NBA):
- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.
|----------------|---|
ADVANCED COMPUTER ARCHITECTURE

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16ELD154</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Lecture Hours</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>03</td>
</tr>
</tbody>
</table>

Credits – 03

Course objectives: This course will enable students to:
- Understand the basic concepts for parallel processing
- Analyze program partitioning and flow mechanisms
- Apply pipelining concept for the performance evaluation
- Learn the advanced processor architectures for suitable applications

Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Teaching Hours</th>
<th>Revised Bloom’s Taxonomy (RBT) Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Computer Models:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification of parallel</td>
<td>8 Hours</td>
<td>L2, L3, L4</td>
</tr>
<tr>
<td>computers, Multiprocessors</td>
<td>(Text 1)</td>
<td></td>
</tr>
<tr>
<td>and multicomputers, Multivector and SIMD computers. Program and Network Properties, Conditions of parallelism, Data and resource Dependences, Hardware and software parallelism.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module -2		
Program partitioning and	8 Hours	**L2, L3, L4**
scheduling, Grain Size and	(Text 1)	
latency, Program flow		
mechanisms, Control flow		
versus data flow, Data flow		
Architecture, Demand driven		
mechanisms, Comparisons of		
flow mechanisms, Principles		
of Scalable Performance,		
Performance Metrics and		
Measures, Parallel Processing		
Applications, Speedup		
Performance Laws, Scalability		
Analysis and Approaches.		

Module -3		
Advanced Processors:		
Advanced processor technology,	8 Hours	**L1, L2, L3**
Instruction-set Architectures,	(Text 1)	
CISC Scalar Processors, RISC		
Scalar Processors, Superscalar		
Processors, VLIW Architectures,		
Pipelining, Linear pipeline		
processor, nonlinear pipeline		
processor, Instruction pipeline		
design.		

| **Module -4** | | |
Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch Handling techniques, branch prediction, Arithmetic Pipeline Design, Computer arithmetic principles, Static Arithmetic pipeline, Multifunctional arithmetic pipelines.

<table>
<thead>
<tr>
<th>Module -5</th>
<th>8 Hours (Text 1)</th>
<th>L2, L3, L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multithread and Dataflow Architecture: Principles of Multithreading, Scalable and Multithreaded Architecture, Data flow Architecture, Symmetric shared memory architecture, distributed shared memory architecture.</td>
<td>8 Hours (Text 1 & 2)</td>
<td>L1, L2, L3</td>
</tr>
</tbody>
</table>

Course outcomes: At the end of this course, the students will be able to:
- Understand the basic concepts for parallel processing
- Analyze program partitioning and flow mechanisms
- Apply pipelining concept for the performance evaluation
- Learn the advanced processor architectures for suitable applications

Graduating Attributes (as per NBA)
- Engineering Knowledge
- Problem Analysis
- Design / development of solutions

Question paper pattern:
- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Reference Books:
VLSI and ES LAB - 1

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I

<table>
<thead>
<tr>
<th>Laboratory Code</th>
<th>16EVEL16</th>
<th>IA Marks</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lecture Hours/Week</td>
<td>01Hr Tutorial (Instructions) + 02 Hours Laboratory</td>
<td>Exam Marks</td>
<td>80</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CREDITS – 02

Course objectives: This course will enable students to:
- Learn Verilog Code Programming for the design of digital circuits
- Use FPGA/CPLD board and Logic Analyzer or Chipscope to verify the results
- Learn Assembly language programming for different applications using ARM-Cortex M3 Kit and Keil uvision- 4 tool.
- Learn C language programming for different applications using ARM- Cortex M3 Kit and Keil uvision-4 tool.

Laboratory Experiments:

1. **Digital Design Experiments:** Using Verilog code and any Compiler. Download code to FPGA/CPLD board and verify the output using Logic Analyzer or Chipscope
 a) Design and verify an 8 to 3 programmable priority encoder
 b) Design and verify 3-bit Arbitrary Counter and repeat the given sequence
 c) Design and Verify BCD adder and subtractor
 d) Design and verify a sequential block to generate a sequence (say 11101) using appropriate FSM.
 e) Design and verify 8 bit Ripple carry adder and Carry skip adder.
 f) Design and verify a Linear feedback shift register based on a given polynomial expression
 g) Design and verify the following 8 bit multipliers. Also report on area delay trade-off
 i) Serial Multiplier
 ii) Parallel Multiplier
 h) Design and verify a parameterized FIFO
 i) Design and verify register file which has 32-entry 3-ports having explicit address decoder. The ports are dedicated for read and write and will take one clock cycle for read or write operation

Revised Bloom’s Taxonomy

L2,L3,L4,L5
2) **ARM Cortex M3 Programs**: (Programming to be done using Keil uVision 4 and download the program on to a M3 evaluation board such as NXP LPC1768 or ATMEL ATSAM3U)
 a) Write an Assembly language program to calculate the sum and display the result for the addition of first ten numbers.
 $$\text{SUM} = 10 + 9 + 8 + \ldots + 1$$
 b) Write a Assembly language program to link multiple object files and link them together
 c) Write an Assembly language program to store data in RAM
 d) Write a C program to Output the “Hello World” message using UART
 e) Write a C program to Design a Stopwatch using interrupts

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Develop Verilog Code for the design of digital circuits
- Use FPGA/CPLD board and Logic Analyzer or Chipscope to verify the results
- Develop Assembly language programs for different applications using ARM-Cortex M3 Kit and Keil uvision-4 tool.
- Develop C language programs for different applications using ARM-Cortex M3 Kit and Keil uvision-4 tool

Graduate Attributes (as per NBA)
- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions.

Conduct of Practical Examination:
- All laboratory experiments are to be included for practical examination.
- For examination, two questions using different tool to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.