VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM
SCHEME OF TEACHING AND EXAMINATION FOR
M.Tech. VLSI Design and Embedded Systems

I Semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Teaching hours/week</th>
<th>Duration of Exam in Hours</th>
<th>Marks for I.A.</th>
<th>Exam</th>
<th>Total Marks</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14ELD11</td>
<td>Advanced Mathematics</td>
<td>Lecture: 4</td>
<td>Practical / Field Work / Assignment / Tutorials: 2</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>14EVE12</td>
<td>Digital VLSI Design</td>
<td>Lecture: 4</td>
<td>Practical / Field Work / Assignment / Tutorials: 2</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>14EVE13</td>
<td>Advanced Embedded Systems</td>
<td>Lecture: 4</td>
<td>Practical / Field Work / Assignment / Tutorials: 2</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>14EVE14</td>
<td>VLSI Process Technology</td>
<td>Lecture: 4</td>
<td>Practical / Field Work / Assignment / Tutorials: 2</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>14EVE15X</td>
<td>Elective - 1</td>
<td>Lecture: 4</td>
<td>Practical / Field Work / Assignment / Tutorials: 2</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>14EVE16</td>
<td>VLSI Design and Embedded System Lab -1</td>
<td>--</td>
<td>Practical / Field Work / Assignment / Tutorials: 3</td>
<td>3</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>14EVE17</td>
<td>Seminar on Advanced topics from refereed journals</td>
<td>--</td>
<td>Practical / Field Work / Assignment / Tutorials: 3</td>
<td>--</td>
<td>25</td>
<td>--</td>
<td>25</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Practical / Field Work / Assignment / Tutorials</th>
<th>Duration of Exam in Hours</th>
<th>Marks for I.A.</th>
<th>Exam</th>
<th>Total Marks</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>18</td>
<td>23</td>
<td>300</td>
<td>550</td>
<td>850</td>
<td>23</td>
</tr>
</tbody>
</table>

Elective-1:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 ELD151</td>
<td>Digital System Design using Verilog</td>
</tr>
<tr>
<td>14 EVE 152</td>
<td>VLSI Design Automation</td>
</tr>
<tr>
<td>14 ELD 153</td>
<td>Nanoelectronics</td>
</tr>
<tr>
<td>14 EVE 154</td>
<td>ASIC Design</td>
</tr>
<tr>
<td>14 EVE 155</td>
<td>System Verilog</td>
</tr>
</tbody>
</table>
VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM
SCHEME OF TEACHING AND EXAMINATION FOR
M.Tech. VLSI Design and Embedded Systems

II Semester

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Teaching hours/week</th>
<th>Duration of Exam in Hours</th>
<th>Marks for</th>
<th>Total Marks</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Practical / Field Work / Assignment/ Tutorials</td>
<td>I.A.</td>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>14EVE21</td>
<td>Design of Analog and Mixed mode VLSI Circuits</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>14EVE22</td>
<td>Low Power VLSI Design</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>14EVE23</td>
<td>VLSI Testing and Verification</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>14ELD 24</td>
<td>Real Time Operating Systems</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>14EVE25X</td>
<td>Elective-2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>14EVE26</td>
<td>VLSI Design and Embedded System Lab -2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>14EVE27</td>
<td>Seminar on Advanced topics from refereed journals</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Phase-I(6 week Duration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>300</td>
<td>550</td>
</tr>
</tbody>
</table>

Elective-2:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Name of the Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 EVE 251</td>
<td>VLSI for signal processing</td>
</tr>
<tr>
<td>14 EVE 252</td>
<td>High Speed VLSI Design</td>
</tr>
<tr>
<td>14 EVE 254</td>
<td>CMOS RF Circuit Design</td>
</tr>
<tr>
<td>14 EVE 255</td>
<td>SOC Design</td>
</tr>
<tr>
<td>14 ELD 253</td>
<td>MEMS</td>
</tr>
</tbody>
</table>

Between the II Semester and III Semester, after availing a vocation of 2 weeks.
III Semester: INTERNSHIP

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
<th>No. of Hrs./Week</th>
<th>Duration of the Exam in Hours</th>
<th>Marks for Total Marks</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Practical / Field Work</td>
<td>I.A.</td>
<td>Exam</td>
</tr>
<tr>
<td>14EVE31</td>
<td>Midterm Presentation on Internship (After 8 weeks from the date of commencement)</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>14EVE32</td>
<td>Report on Internship (After 16 weeks from the date of commencement)</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>14EVE33</td>
<td>Evaluation and Viva-voce</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

* The student shall make a midterm presentation of the activities undertaken during the first 8 weeks of internship to a panel comprising Internship Guide, a senior faculty from the department and Head of the Department.

The College shall facilitate and monitor the student internship program.

The internship report of each student shall be submitted to the University.
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>No. of Hrs./Week</th>
<th>Duration of Exam in Hours</th>
<th>Marks for</th>
<th>Total Marks</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14EVE41</td>
<td>Synthesis and Optimization of Digital Circuits</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>14EVE42X</td>
<td>Elective-3</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>14EVE43</td>
<td>Evaluation of Project Phase-I</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>14EVE44</td>
<td>Phase-II : Midterm evaluation of Project #</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>14EVE45</td>
<td>Evaluation of Project Work and Viva-voce</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>100+100</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
<td>04</td>
<td>09</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Grand Total (I to IV Sem.) : 2400 Marks; 94 Credits</td>
<td></td>
<td></td>
<td>150</td>
<td>400</td>
<td>550</td>
</tr>
</tbody>
</table>

Elective-3:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 EVE 421</td>
<td>Advances in VLSI Design</td>
</tr>
<tr>
<td>14 EVE 424</td>
<td>Advanced Computer Architecture</td>
</tr>
<tr>
<td>14 ELD 422</td>
<td>Image and Video Processing</td>
</tr>
<tr>
<td>14 EVE 425</td>
<td>Reconfigurable Computing</td>
</tr>
<tr>
<td>14 ESP 423</td>
<td>Modern DSP</td>
</tr>
</tbody>
</table>
Note:

1) Project Phase – I: 6 weeks duration shall be carried out between II and III Semesters. Candidates in consultation with the guides shall carry out literature survey / visit to Industries to finalize the topic of dissertation.

2) Project Phase – II: 16 weeks duration during III Semester. Evaluation shall be taken during the Second week of the IV Semester. Total Marks shall be 25.

Marks of Evaluation of Project:

- The I.A. Marks of Project Phase – I & II shall be sent to the University along with Project Work report at the end of the Semester.

4) During the final viva, students have to submit all the reports.

5) The Project Valuation and Viva-Voce will be conducted by a committee consisting of the following:

 a) Head of the Department (Chairman)
 b) Guide
 c) Two Examiners appointed by the university. (Out of two external examiners at least one should be present).
Advanced Mathematics

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>: 14ELD11</th>
<th>IA Marks</th>
<th>: 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Lecture Hours / Week</td>
<td>: 04</td>
<td>Exam. Hours</td>
<td>: 03</td>
</tr>
<tr>
<td>Total No. of Lecture Hours</td>
<td>: 50</td>
<td>Exam. Marks</td>
<td>: 100</td>
</tr>
</tbody>
</table>

Matrix Theory
QR EL Decomposition – Eigen values using shifted QR algorithm - Singular Value EL Decomposition - Pseudo inverse- Least square approximations

Calculus of Variations
Concept of Functionals- Euler’s equation – functional dependent on first and higher order derivatives – Functionals on several dependent variables – Isoperimetric problems- Variational problems with moving boundaries

Transform Methods
Laplace transform methods for one dimensional wave equation – Displacements in a string – Longitudinal vibration of a elastic bar – Fourier transform methods for one dimensional heat conduction problems in infinite and semi infinite rod.

Elliptic Equation
Laplace equation – Properties of harmonic functions – Fourier transform methods for laplace equations. Solution for Poisson equation by Fourier transforms method

Linear and Non Linear Programming
Simplex Algorithm- Two Phase and Big M techniques – Duality theory- Dual Simplex method. Non Linear Programming –Constrained extremal problems- Lagranges multiplier method- Kuhn- Tucker conditions and solutions

Reference Books:

MOS Inverters: Static Characteristics: Introduction, Resistive-Load Inverter, Inverters with n_Type MOSFET Load, CMOS Inverter.

BiCMOS Logic Circuits: Introduction, Bipolar Junction Transistor (BJT): Structure and Operation, Dynamic Behavior of BJTs, Basic BiCMOS Circuits: Static Behavior, Switching Delay in BiCMOS Logic Circuits, BiCMOS Applications.

Reference Books:

Advanced Embedded Systems

Typical Embedded System: Core of the Embedded System, Memory, Sensors and Actuators, Communication Interface, Embedded Firmware, Other System Components.

Embedded Hardware Design and Development: EDA Tools, How to Use EDA Tool, Schematic Design – Place wire, Bus, port, junction, creating part numbers, Design Rules check, Bill of materials, Netlist creation, PCB Layout Design – Building blocks, Component placement, PCB track routing.

Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages

Real-Time Operating System (RTOS) based Embedded System Design: Operating System Basics, Types of OS, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling: Putting them altogether, Task Communication, Task Synchronization, Device Drivers, How to Choose an RTOS

The Embedded System Development Environment: The Integrated Development Environment (IDE), Types of Files Generated on Cross compilation, Disassembler/ELDompiler, Simulators, Emulators and Debugging, Target Hardware Debugging, Boundary Scan.
Reference Books:

VLSI Process Technology

Dielectric and Polysilicon Film Deposition: Introduction, Deposition Processes, Polysilicon, Silicon Dioxide, Silicon Nitride, Plasma-Assisted Depositions, Other Materials.

VLSI Process Integration: Introduction, Fundamental Considerations for IC Processing, NMOS IC technology, CMOS IC Technology, MOS Memory IC Technology, Bipolar IC Technology, IC Fabrication.

Packaging of VLSI Devices: Introduction, Package Types, Packaging Design Considerations.

Reference Books:

Digital System Design Using Verilog

Combinational Basics: Boolean Functions and Boolean Algebra, Binary Coding, Combinational Components and Circuits, Verification of Combinational Circuits.

Number Basics: Unsigned and Signed Integers, Fixed and Floating-point Numbers.

Sequential Basics: Storage elements, Counters, Sequential Datapaths and Control, Clocked Synchronous Timing Methodology.

Memories: Concepts, Memory Types, Error Detection and Correction.

Implementation Fabrics: ICs, PLDs, Packaging and Circuit Boards, Interconnection and Signal Integrity.

Processor Basics: Embedded Computer Organization, Instruction and Data, Interfacing with memory.

I/O interfacing: I/O devices, I/O controllers, Parallel Buses, Serial Transmission, I/O software.

Accelerators: Concepts, case study, Verification of accelerators.

Design Methodology: Design flow, Design optimization, Design for test.

REFERENCE BOOKS:

VLSI Design Automation

Logic Synthesis & Verification: Introduction to combinational logic synthesis, Binary Decision Diagram, Hardware models for High-level synthesis.

Placement, Floor Planning & Pin Assignment: problem formulation, simulation base placement algorithms, other placement algorithms, constraint based floor planning, floor planning algorithms for mixed block & cell design. General & channel pin assignment

Global Routing: Problem formulation, classification of global routing algorithms, Maze routing algorithm, line probe algorithm, Steiner Tree based algorithms, ILP based approaches

Detailed Routing: problem formulation, classification of routing algorithms, single layer routing algorithms, two layer channel routing algorithms, three layer channel routing algorithms, and switchbox routing algorithms.

Over The Cell Routing & Via Minimization: two layers over the cell routers, constrained & unconstrained via minimization

Scripting Languages: Overview of Scripting Languages – PERL, CGI, VB Script, Java Script. PERL: Operators, Statements Pattern Matching etc. Data Structures, Modules, Objects, Tied Variables. Inter process Communication Threads, Compilation & Line Interfacing

REFERENCE BOOKS:
NanoElectronics

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>14ELD153</td>
<td>50</td>
</tr>
<tr>
<td>No. of Lecture Hours /week</td>
<td>Exam Hours</td>
</tr>
<tr>
<td>04</td>
<td>03</td>
</tr>
<tr>
<td>Total no. of Lecture Hours</td>
<td></td>
</tr>
</tbody>
</table>

Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moores law and continued miniaturization., Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giantmolecular solids, Free electron models and energy bands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometerlength scale, Fabrication methods: Top down processes, Bottom up processes methods for templating the growth of nanomaterials, ordering of nanosystems.

Characterization: Classification, Microscopic techniques, Field ion microscopy, scanning probe techniques, diffraction techniques: bulk, surface, spectroscopy techniques: photon, radiofrequency, electron, surface analysis and dept profiling: electron, mass, Ion beam, Reflectometry, Techniques for property measurement: mechanical, electron, magnetic, thermal properties.

Inorganic semiconductor nanostructures: overview of semiconductor physics. Quantum confinement in semiconductor nanostructures: quantumwells, quantum wires, quantum dots, super-lattices, band offsets, electronicdensity of states.

Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells, lithography and etching, cleaved edgeover growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, colloidal quantum dots, self-assembly techniques.

Physical processes: modulation doping, quantum hall effect, resonanttunneling, charging effects, ballistic carrier transport, Inter band absorption, intraband absorption, Light emission processes, phonon bottleneck, quantumconfined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical electrical and structural.

Methods of measuring properties:structure:atomic,crystallography,microscopy,spectroscopy. Properties of nanoparticles: metalnano clusters, semiconducting nanoparticles, rare gas and molecularclusters, methods of synthesis(RF, chemical, thermolysis, pulsed laser methods) Carbon nanostructures and its applications(field emission and shielding, computers, fuelcells, sensors, catalysis).Self assembling nanostructured
molecular materials and devices: building blocks, principles of self assembly, methods to prepare and pattern nanoparticles, template dnanostructures, liquid crystal mesophases. Nanomagnetic materials and devices: magnetism, materials, magnetoresistance, nanomagnetism inotechnology, challenges facing nanomagnetism.

Applications: Injectionlasers, quantumcascadelasers, singlephotonsources, biologicaltagging, opticalmemories, coulomb blockade devices, photonic structures, QWIP’s, NEMS, MEMS.

Reference Books:
ASIC Design

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>14EVE154</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA Marks</td>
<td>50</td>
</tr>
<tr>
<td>No. of Lecture Hours /week</td>
<td>04</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
<tr>
<td>Total no. of Lecture Hours</td>
<td>50</td>
</tr>
<tr>
<td>Exam Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: All Designs Will Be Based On VHDL

Introduction: Full Custom with ASIC, Semi custom ASICS, Standard Cell based ASIC, Gate array based ASIC, Channelled gate array, Channel less gate array, structured get array, Programmable logic device, FPGA design flow, SIC cell libraries.

Data Logic Cells: Data Path Elements, Adders, Multiplier, Arithmetic Operator, I/O cell, Cell Compilers

ASIC Library Design: Logical effort: practicing delay, logical area and logical efficiency logical paths, multi stage cells, optimum delay, optimum no. of stages, library cell design.

Low-Level Design Entry: Schematic Entry: Hierarchical design. The cell library, Names, Schematic, Icons & Symbols, Nets, schematic entry for ASIC’S, connections, vectored instances and buses, Edit in place attributes, Netlist, screener, Back annotation.

Programmable ASIC: programmable ASIC logic cell, ASIC I/O cell.

A Brief Introduction to Low Level Design Language: an introduction to EDIF, PLA Tools, an introduction to CFI designs representation. Half gate ASIC. Introduction to Synthesis and Simulation.

ASIC Construction Floor Planning and Placement And Routing: Physical Design, CAD Tools, System Partitioning, Estimating ASIC size, partitioning methods. Floor planning tools, I/O and power planning, clock planning, placement algorithms, iterative placement improvement, Time driven placement methods. Physical Design flow global Routing, Local Routing, Detail Routing, Special Routing, Circuit Extraction and DRC.

Reference Books:

System Verilog

Subject Code : 14 EVE155 IA Marks : 50
No. of Lecture Hours /week : 04 Exam Hours : 03
Total no. of Lecture Hours : 50 Exam Marks : 100

Basics of Verification: Difference between ASIC verification and ASIC testing, Verification basics, Testbenches, Layered Organization of Testbenches. Importance of hardware verification languages and methodologies. (Reference website/Verilog Books / SystemVerilog Methodologies)

System Verilog data types and typedefs: System Verilog data types, enhanced literal numbers syntax, 4-state and 2-state types, typedefs, enum, struct data type, Type parameters, $unit and $root. Packages, strings, static and dynamic type casting, Random number generation. (Reference 1)

System Verilog operators, loops, jumps, functions: loops and jumps in system verilog, introduction to different always blocks, systemverilog enhancements to tasks and functions, systemverilog priority and unique modifiers for case and if statements, ‘time scale, systemverilog timeunit and time precision (Reference 1)

Structs, Unions, Packed and Unpacked Arrays, Semaphores and Mailboxes:
Structs and its assignments, packed and unpacked arrays, array indexing, structs and packed structs, Unions and packed unions, dynamic arrays and methods, foreach loop, associative arrays and methods, queues and concatenation operations, queue methods, semaphores and methods, mailboxes and methods, bounded and unbounded mailboxes. (Reference 1)

Class and Randomization: Systemverilog class basics, class declaration, class members and methods, class handles, class object construction, super and this keywords, object handles, user defined constructors, class extension and inheritance, chaining new() constructors, overriding class methods, extending class methods, local and protected keywords, constrained random variables, directed vs random testing, rand and randc class data types, randomize-randomizing class variables, random case, built-in-randomization methods, random sequence and examples. (Reference1)

Interfaces: Interface overview, generic interfaces, interfaces vs records, how interfaces work, requirements of good interface, interface constructs, interface mode ports. (Reference 1)

Program block: Fundamental testbench construction, program blocks, program block interaction with modules, final blocks, Testbench
stimulus/Verification vector timing strategies. (Reference 1)

Clocking: Clocking blocks, clocking skews, clocking block scheduling, fork-join processes. (Reference 1)

Constrained Random variables, Coverage, Methods and interfaces:
Randomization constraints, simple and multi-statement constraints, constraint distribution and set membership, constraint distribution operators, external constraints, covergroups, coverpoints, coverpoint bins and labels, cross coverage, covergroup options, coverage capabilities. Virtual class, why to use virtual class, virtual class methods and restrictions, polymorphism using virtual methods, pure virtual methods, pure constraints, passing type parameters, virtual interfaces. (Reference 1)

System Verilog assertions: Assertion definition, assertion benefits, system Verilog assertion types, immediate assertions, concurrent assertions, assert and cover properties and labels, overlapping and non-overlapping implications, edge testing functions, sequences, Vacuous success, property styles, System Verilog assertion system functions, Assertion severity tasks, assertion and coverage example of an FSM design. (Reference 3)

References:

VLSI Design and Embedded System Lab -1

Subject Code : 14EVE16 IA Marks : 50
No. of Lecture Hours /week : 03 Exam Hours : 03
Total no. of Lecture Hours : 42 Exam Marks : 50

VLSI Digital Design

ASIC-Digital Design Flow

1. Write Verilog Code for the following circuits and their Test Bench for verification, observe the waveform and synthesize the code with technological library(constraints to be given). Do the initial timing verification with gate level simulation.
 1. An inverter, Buffer and Transmission gate
 2. Basic/universal gates
 3. Flip flop - RS, D, JK, MS, T
 4. Serial & Parallel adder
 5. 4-bit counter [Synchronous & Asynchronous counter]

FPGA Digital Design

VLSI Front End Design programs:

Programming can be done using any compiler. Down load the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels and logic analyzer)/Chipscope pro apart from verification by simulation with any of the front end tools

1. Write Verilog code for the design of 8-bit
 i. Carry Ripple Adder
 ii. Carry LookAhead adder
 iii. Carry Skip Adder
 iv. BCD Adder & Subtractor
2. Write Verilog Code for 8-bit
 i. Array Multiplication (Signed and Unsigned)
 ii. Booth Multiplication (Radix-4)
3. Write Verilog code for 4/8-bit
 i. Magnitude Comparator
 ii. LFSR
 iii. Parity Generator
 iv. Universal Shift Register
4. Write Verilog Code for 3-bit Arbitrary Counter to generate 0,1,2,3,6,5,7 and repeats.
5. Design a Mealy and Moore Sequence Detector using Verilog to detect Sequence.
 Eg 11101 (with and without overlap) any sequence can be specified
6. Design a FIFO and LIFO buffers in Verilog and Verify its Operation.
7. Design a coin operated public Telephone unit using Mealy FSM model with following operations
 i. The calling process is initiated by lifting the receiver.
 ii. Insert 1 Rupee Coin to make a call.
 iii. If line is busy, placing the receiver on hook should return a coin
 iv. If line is through, the call is allowed for 60 seconds at the 45th second prompt another 1 Rupee coin to be inserted, to continue the call.
 v. If user doesn't insert the coin within 60 seconds the call should be terminated.
 vi. The system is ready to accept new call request when the receiver is placed on the hook.
 vii. The FSM goes 'out of order' state when there is a Line Fault.
Note: Implementing the above designs on Xilinx/Altera/Cypress/equivalent based FPGA/CPLD kits

Embedded Systems:

1. Use any EDA (Electronic Design Automation) tool to learn the Embedded Hardware Design and for PCB design.
2. Familiarize the different entities for the circuit diagram design.
3. Familiarize with the layout design tool, building blocks, component placement, routings, design rule checking etc.

ARM-CORTEX M3

[Programming to be done using KeiluVision 4 and download the program on to a M3 evaluation board such as NXP LPC1768 or ATMEL ATSAM3U].

1. Write an Assembly language program to calculate 10+9+8+.........+1
2. Write a Assembly language program to link Multiple object files and link them together.
3. Write a Assembly language program to store data in RAM.
4. Write a C program to Output the "Hello World" message using UART.
5. Write a C program to Design a Stopwatch using interrupts.
6. Write an Exception vector table in C
7. Write an Assembly Language Program for locking a Mutex.
8. Write a SVC handler in C. Use the wrapper code to extract the correct stack frame starting location. The C handler can then use this to extract the stacked PC location and the stacked register values.
Design of Analog and Mixed Mode VLSI Circuits

Subject Code: 14 EVE21
IA Marks: 50
No. of Lecture Hours /week: 04
Exam Hours: 03
Total no. of Lecture Hours: 50
Exam Marks: 100

Basic MOS Device Physics: General considerations, MOS I/V Characteristics, second order effects, MOS device models.

Single stage Amplifier: CS stage with resistance load, divide connected load, current source load, triode load, CS stage with source degeneration, source follower, common-gate stage, cascade stage, choice of device models.

Frequency response of CS stage: source follower, Common gate stage, Cascade stage and Difference pair. Noise in CS stage, C- G stage, source follower, cascade stage, differential pair.

Differential Amplifiers & Current Mirrors: Basic difference pair, common mode response, Differential pair with MOS loads, Gilbert cell. Basic current mirrors, Cascade mirrors, active current mirrors.

Oscillators and Phase Locked Loops: Ring Oscillators, LC Oscillators, VCO, Mathematical Model of VCO. Simple PLL, Charge pump PLL, Non-ideal effects in PLL, Delay locked loops and applications.

Bandgap References and Switched capacitor Circuits: General Considerations, Supply Independent biasing, PTAT Current Generation, Constant Gm Biasing, Sampling Switches, Switched Capacitor Amplifiers.

Data Converter Architectures: DAC & ADC Specifications, Resistor String DAC, R-2R Ladder Network, Current Steering DAC, Charge Scaling DAC, Cyclic DAC, Pipeline DAC, Flash ADC, Pipeline ADC, Integrating ADC, Successive Approximation ADC.

Reference Book:

Introduction: Need for low power VLSI chips, Sources of power dissipation on Digital Integrated circuits. Emerging Low power approaches, Physics of power dissipation in CMOS devices.

Power estimation, Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation.

Probabilistic power analysis: Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy.

Low Power Design Circuit level: Power consumption in circuits. Flip Flops & Latches design, high capacitance nodes, low power digital cells library.

Logic level: Gate reorganization, signal gating, logic encoding, state machine encoding, pre-computation logic.

Low power Architecture & Systems: Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components, low power memory design.

Low power Clock Distribution: Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs tolerable skew, chip & package co design of clock network.

Reference Books:
VLSI Testing and Verification

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>14 EVE23</th>
<th>IA Marks</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Lecture Hours /week</td>
<td>04</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
<tr>
<td>Total no. of Lecture Hours</td>
<td>50</td>
<td>Exam Marks</td>
<td>100</td>
</tr>
</tbody>
</table>

Test Generation for Combinational Logic Circuits: Fault Diagnosis of Digital Circuits, Test Generation Techniques for Combinational Circuits, Detection of Multiple Faults in Combinational Logic Circuits.

Design of Testable Sequential Circuits: Controllability and Observability, Ad Hoc Design Rules for Improving Testability, Design of Detectable Sequential Circuits, The Scan-Path Technique for Testable Sequential Circuit Design, Level-Sensitive Scan Design, Random Access Scan Technique, Partial Scan, Testable Sequential Circuit Design Using Nonscan Techniques, CrossCheck, Boundary Scan.

Built-In Self Test: Test Pattern Generation for BIST, Output Response Analysis, Circular BIST, BIST Architectures.

Testable Memory Design: RAM Fault Models, Test Algorithms for RAMs, Detection of Pattern Sensitive Faults, BIST Techniques for Ram Chips, Test Generation and BIST for Embedded RAMs.

Importance of Design Verification: What is verification? What is attest bench? The importance of verification, Reconvergence model, Formal verification, Equivalence checking, Model checking, Functional verification.[Ref4-Chapter1]

Verification Tools: Linting tools: Limitations of linting tools, linting verilog source code, linting VHDL source code, linting OpenVera and e-source code, code reviews. Simulators: Stimulus and response, Event based simulation, cycle based simulation, Co-simulators, verification intellectual property: hardware modelers, waveform viewers.[Ref4-Chapter2]

The verification plan: The role of verification plan: specifying the verification plan, defining the first success. Levels of verification: unit level verification, reusable components verification, ASIC and FPGA verification, system level verification, board level verification, verifying strategies, verifying responses. [Ref4-Chapter3]
Static Timing Verification: Concept of static timing analysis. Cross talk and noise. Limitations of STA. slew of a wave form, Skew between the signals, Timing arcs and unateness, Min and Max timing paths, clock domains, operating conditions, critical path analysis, falsepaths, Timing models. [Ref5 Chapter 1, 2, 3, 8]

Physical Design Verification: Layout rule checks and electrical rule checks. Parasitic extraction. Antenna, Crosstalk and Noise: Cross talk glitch analysis, crosstalk delay analysis, timing verification [Ref6 Chapter 8]

Reference Books:
7. http://www.cse.psu.edu/~vijay/verify/instructors.html
Real Time Operating Systems

Subject Code : 14 ELD24
IA Marks : 50
No. of Lecture Hours /week : 04
Exam Hours : 03
Total no. of Lecture Hours : 50
Exam Marks : 100

Processing: Preemptive Fixed-Priority Policy, Feasibility, Rate Monotonic least upper bound, Necessary and Sufficient feasibility, Deadline – Monotonic Policy, Dynamic priority policies.

Memory: Physical hierarchy, Capacity and allocation, Shared Memory, ECC Memory, Flash file systems.

Multi-resource Services: Blocking, Deadlock and livestock, Critical sections to protect shared resources, priority inversion

Soft Real-Time Services: Missed Deadlines, QoS, Alternatives to rate monotonic policy, Mixed hard and soft real-time services.

Embedded System Components: Firmware components, RTOS system software mechanisms, Software application components.

Performance Tuning: Basic concepts of drill-down tuning, hardware – supported profiling and tracing, Building performance monitoring into software, Path length, Efficiency, and Call frequency, Fundamental optimizations.

High availability and Reliability Design: Reliability and Availability, Similarities and differences, Reliability, Reliable software, Available software, Design tradeoffs, Hierarchical applications for Fail-safe design.

Design of RTOS – PIC microcontroller. (Chap 13 of book Myke Predko)

Reference Books:

VLSI for Signal Processing

Pipelining and parallel processing, pipelining of FIR Digital Filters, parallel processing, Pipelining and parallel processing for low power.

Retiming: Definition and Properties, Solving Systems of Inequalities, Retiming Techniques, Unfolding An Algorithm for Unfolding, Properties Of Unfolding, Critical path, Unfolding And Retiming, Application of Unfolding

Systolic architecture design: systolic array design Methodology, FIR systolic array, Selection of Scheduling Vector, Matrix-Matrix Multiplication and 2D systolic Array Design, Systolic Design for space representation containing Delays.

Fast convolution–Cook-Toom Algorithm, Winograd Algorithm, Iterated convolution, cyclic Convolution Design of fast convolution Algorithm by Inspection

Reference Books:

High Speed VLSI Design

Introduction to high speed digital design: Frequency, time and distance issues in digital VLSI design. Capacitance and inductance effects, high speed properties of logic gates, speed and power. Modeling of wires, geometry and electrical properties of wires, Electrical models of wires, transmission lines, lossless LC transmission lines, lossy RLC transmission lines and special transmission lines.

Signaling convention and circuits: Signaling modes for transmission lines, signaling over lumped transmission media, signaling over RC interconnect, driving lossy LC lines, simultaneous bi-directional signaling terminations, transmitter and receiver circuits.

Timing convention and synchronisation: Timing fundamentals, timing properties of clocked storage elements, signals and events, open loop timing, level sensitive clocking, pipeline timing, closed loop timing, clock distribution, synchronization failure and meta-stability, clock distribution, clock skew and methods to reduce clock skew, controlling crosstalk in clock lines, delay adjustments, clock oscillators and clock jitter - PLL and DLL based clock aligners.

Clocked & non clocked Logics:
Single-Rail Domino Logic, Dual-Rail Domino Structures, Latched Domino Structures, Clocked Pass Gate Logic, Static CMOS, DCVS Logic, Non-Clocked Pass Gate Families.

Latching Strategies:
Basic Latch Design, and Latching single-ended logic and Differential Logic,
Race Free Latches for Pre-charged Logic Asynchronous Latch Techniques

Reference Books:
MEMS

Overview of MEMS & Microsystems: MEMS & Microsystems, Typical MEMS and Micro system products — features of MEMS, The multidisciplinary nature of Microsystems design and manufacture, Applications of Microsystems in automotive industry, health care industry, aerospace industry, industrial products, consumer products and telecommunications.

Scaling Laws in Miniaturization: Introduction to scaling, scaling in geometry, scaling in rigid body dynamics, scaling electrostatic forces, electromagnetic forces, electricity, scaling in fluid mechanics & heat transfer.

Transduction Principles in MEMS & Microsystems: Introduction, Micro sensors — thermal, radiation, mechanical, magnetic and bio — sensors, Micro actuation, MEMS with micro actuators.

Micro System Design and Modeling: Introduction, Design considerations: Process design, Mechanical design, Modeling using CAD tools: ANSYS / Multiphysics or Intellisuite or MEMS CAD, Features and Design considerations of RF MEMS, Design considerations of Optical MEMS (MOEMS), Design and Modeling: case studies - i) Cantilever beam ii) Micro switches iii) MEMS based SMART antenna in mobile applications for maximum reception of signal in changing communication conditions and iv) MEMS based micro mirror array for control and switching in optical communications.

Micro system packaging: Over view of mechanical packaging of micro electronics micro system packaging, Interfaces in micro system packaging, Packaging technologies.

Reference Books

CMOS RF Circuit Design

Introduction to RF Design and Wireless Technology: Design and Applications, Complexity and Choice of Technology. Basic concepts in RF design: Nonlinearly and Time Variance, Intersymbol interference, random processes and noise. Sensitivity and dynamic range, conversion of gains and distortion

RF Modulation: Analog and digital modulation of RF circuits, Comparison of various techniques for power efficiency, Coherent and non-coherent detection, Mobile RF communication and basics of Multiple Access techniques. Receiver and Transmitter architectures, Direct conversion and two-step transmitters

RF Testing: RF testing for heterodyne, Homodyne, Image reject, Direct IF and sub sampled receivers.

BJT and MOSFET Behavior at RF Frequencies: BJT and MOSFET behavior at RF frequencies, modeling of the transistors and SPICE model, Noise performance and limitations of devices, integrated parasitic elements at high frequencies and their monolithic implementation

RF Circuits Design: Overview of RF Filter design, Active RF components & modeling, Matching and Biasing Networks. Basic blocks in RF systems and their VLSI implementation, Low noise Amplifier design in various technologies, Design of Mixers at GHz frequency range, Various mixers- working and implementation. Oscillators- Basic topologies VCO and definition of phase noise, Noise power and trade off. Resonator VCO designs, Quadrature and single sideband generators. Radio frequency Synthesizers- PLLS, Various RF synthesizer architectures and frequency dividers, Power Amplifier design, Liberalization techniques, Design issues in integrated RF filters.

Reference Books:
B. Razavi, “RF Microelectronics” PHI 1998
Goal of the course – Today, VLSI chips are entire “system-on-chip” designs, which include processors, memories, peripheral controllers, and connectivity sub-systems. The course aims to provide an appreciation for the motivation behind SoC design, the challenges of SoC design, and the overall SoC design flow.

Embedded Memories –cache memories, flash memories, embedded DRAM. Topics related to cache memories. Cache coherence. MESI protocol and Directory-based coherence.

MPSoCs: What, Why, How MPSoCs, Techniques for designing MPSoCs, Performance and flexibility for MPSoCs design

Case Study: A Low Power Open Multimedia Application Platform for 3G Wireless.
Reference Books:

VLSI Design and Embedded System Lab -2

Subject Code : 14EVE26 IA Marks : 25
No. of Lecture Hours /week : 03 Exam Hours : 03
Total no. of Lecture Hours : 42 Exam Marks : 50

ANALOG DESIGN

Analog Design Flow

1. Design an Inverter with given specifications*, completing the design flow mentioned below:
 a. **Draw the schematic** and verify the following
 i) DC Analysis
 ii) Transient Analysis
 b. **Draw the Layout** and verify the DRC, ERC
 c. Check for XX
 d. Extract RC and back annotate the same and verify the Design
 e. Verify & Optimize for Time, Power and Area to the given constraint***

2. Design the following circuits with given specifications*, completing the design flow mentioned below:
 a. Draw the schematic and verify the following
 i) DC Analysis
 ii) AC Analysis
 iii) Transient Analysis
 b. Draw the Layout and verify the DRC, ERC
 c. Check for XX
 d. Extract RC and back annotate the same and verify the Design.
 i) A Single Stage differential amplifier
ii) Common source and Common Drain amplifier.

3. Design an op-amp with given specification* using given differential amplifier Common source and Common Drain amplifier in library** and completing the design flow mentioned below:

a. Draw the schematic and verify the following
 i) DC Analysis
 ii). AC Analysis
 iii) Transient Analysis

b. Draw the Layout and verify the DRC, ERC

c. Check for XX

d. Extract RC and back annotate the same and verify the Design.

4. Design a 4 bit R-2R based DAC for the given specification and completing the design flow mentioned using given op-amp in the library**.

a. Draw the schematic and verify the following
 i) DC Analysis
 ii) AC Analysis
 iii) Transient Analysis

b. Draw the Layout and verify the DRC, ERC

c. Check for XX

d. Extract RC and back annotate the same and verify the Design.

5. For the SAR based ADC mentioned in the figure below draw the mixed signal schematic and verify the functionality by completing ASIC Design FLOW.[Specifications to GDS-II]
6 Design a simple 8-bit ADC converter using any one of the tools given above.
7. Design a simple NAND/NOR gate using any one of the tools given above. (Any other experiments may be added in supportive of the course)

EMBEDDED SYSTEMS

Embedded Programming Concepts (RTOS)
1. Create ‘n’ number of child threads. Each thread prints the message “I’m in thread number …” and sleeps for 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
2. Implement the multithread application satisfying the following:
 i. Two child threads are created with normal priority.
 ii. Thread 1 receives and prints its priority and sleeps for 50 ms and then quits.
 iii. Thread 2 prints the priority of the thread 1 and rises its priority to above normal and retrieves the new priority of thread 1, prints it and then quits.
 iv. The main thread waits for the child thread to complete its job and quits.
3. Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism.
4. Test the program below using multithread application
i. The main thread creates a child thread with default stack size and name ‘Child_Thread’.

ii. The main thread sends user defined messages and the message ‘WM_QUIT’ randomly to the child thread.

iii. The child thread processes the message posted by the main thread and quits when it receives the ‘WM_QUIT’ message.

iv. The main thread checks the termination of the child thread and quits when the child thread complete its execution.

v. The main thread continues sending the random messages to the child thread till the ‘WM_QUIT’ message is sent to child thread.

vi. The messaging mechanism between the main thread and child thread is synchronous.

5. Test the program application for creating an anonymous pipe with 512 bytes of size and pass the ‘Read Handle’ of the pipe to a second process using memory mapped object. The first process writes a message ‘Hi from Pipe Server’. The 2nd process reads the data written by the pipe server to the pipe and displays it on the console. Use event object for indicating the availability of data on the pipe and mutex objects for synchronizing the access in the pipe.

6. Create a POSIX based message queue for communicating between two tasks as per the requirements given below:

 i. Use a named message queue with name ‘MyQueue’.

 ii. Create two tasks (Task1 & Task2) with stack size 4000 & priorities 99 & 100 respectively.

 iii. Task 1 creates the specified message queue as Read Write and reads the message present, if any, from the message queue and prints it on the console.

 iv. Task2 open the message queue and posts the message ‘Hi from Task2’. Handle all possible error scenarios appropriately.
Synthesis and Optimization of Digital Circuits

Introduction: Microelectronics, semiconductor technologies and circuit taxonomy, Microelectronic design styles, computer aided synthesis and optimization.

Graphs: Notation, undirected graphs, directed graphs, combinatorial optimization, Algorithms, tractable and intractable problems, algorithms for linear and integer programs, graph optimization problems and algorithms, Boolean algebra and Applications.

Hardware Modeling: Hardware Modeling Languages, distinctive features, structural hardware language, Behavioural hardware language, HDLs used in synthesis, abstract models, structures logic networks, state diagrams, dataflow and sequencing graphs, compilation and optimization techniques.

Two Level Combinational Logic Optimization: Logic optimization, principles, operation on two level logic covers, algorithms for logic minimization, symbolic minimization and encoding property, minimization of Boolean relations.

Multiple Level Combinational Optimizations: Models and transformations for combinational networks, algebraic model, Synthesis of testable network, algorithm for delay evaluation and optimization, rule based system for logic optimization.

Sequential Circuit Optimization: Sequential circuit optimization using state based models, sequential circuit optimization using network models.

Schedule Algorithms: A model for scheduling problems, Scheduling wither source and without resource constraints, Scheduling algorithms for extended sequencing models, Scheduling Pipeline circuits.

Cell Library Binding: Problem formulation and analysis, algorithms for library binding, specific problems and algorithms for library binding (lookup table F.P.G.As and Anti fuse based F.P.G.As), rule based library binding.

Reference Books:

Advances in VLSI Design

Review of MOS Circuits: MOS and CMOS static plots, switches, comparison between CMOS and BI - CMOS.

MESFETS: MESFET and MODFET operations, quantitative description of MESFETS.

MIS Structures and MOSFETS: MIS systems in equilibrium, under bias, small signal operation of MESFETS and MOSFETS.

Short Channel Effects and Challenges to CMOS: Short channel effects, scaling theory, processing challenges to further CMOS miniaturization

Beyond CMOS: Evolutionary advances beyond CMOS, carbon Nanotubes, conventional vs. tactile computing, computing, molecular and biological computing Mole electronics-molecular Diode and diode- diode logic. Defect tolerant computing,

Super Buffers, Bi-CMOS and Steering Logic: Introduction, RC delay lines, super buffers- An NMOS super buffer, tri state super buffer and pad drivers, CMOS super buffers, Dynamic ratio less inverters, large capacitive loads, pass logic, designing of transistor logic, General functional blocks -NMOS and CMOS functional blocks.

System Design: CMOS design methods, structured design methods, Strategies encompassing hierarchy, regularity, modularity & locality, CMOS Chip design Options, programmable logic, Programmable inter connect, programmable structure, Gate arrays standard cell approach, Full custom design.

Reference Books:
Introduction: 2D systems, Mathematical preliminaries – Fourier Transform, Z Transform, Optical & Modulation transfer function, Matrix theory, Random signals, Discrete Random fields, Spectral density function. (Ref.1, Chap.2)

Image Perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome vision models, Fidelity criteria, Color representation, Chromaticity diagram, Color coordinate systems, Color difference measures, Color vision model, Temporal properties of vision. (Ref.1, Chap.3)

Image Sampling and Quantization: Introduction, 2D sampling theory, Limitations in sampling & reconstruction, Quantization, Optimal quantizer, Compander, Visual quantization. (Ref.1, Chap.4)

Image Transforms: Introduction, 2D orthogonal & unitary transforms, Properties of unitary transforms, DFT, DCT, DST, Hadamard, Haar, Slant, KLT, SVD transform. (Ref.1, Chap.5)

Image Representation by Stochastic Models: Introduction, one dimensional Causal models, AR models, Non-causal representations, linear prediction in two dimensions. (Ref.1, Chap.6)

Image Enhancement: Point operations, Histogram modelling, spatial operations, Transform operations, Multi-spectral image enhancement, false color and Pseudo-color, Color Image enhancement. (Ref.1, Chap.7)

Image Filtering & Restoration: Image observation models, Inverse &Wiener filtering, Fourier Domain filters, Smoothing splines and interpolation, Least squares filters, generalized inverse, SVD and Iterative methods, Maximum entropy restoration, Bayesian methods, Coordinate transformation& geometric correction, Blind de-convolution. (Ref.1, Chap.8)

Image Analysis & Computer Vision: Spatial feature extraction, Transform features, Edge detection, Boundary Extraction, Boundary representation, Region representation, Moment representation, Structure, Shape features, Texture, Scene matching & detection, Image segmentation, Classification Techniques. (Ref.1, Chap.9)
Image Reconstruction from Projections: Introduction, Radon Transform, Back projection operator, Projection theorem, Inverse Radon transform, Fourier reconstruction, Fan beam reconstruction, 3D tomography. (Ref.1, Chap.10)

Image Data Compression: Introduction, Pixel coding, Predictive techniques, Transform coding, Inter-frame coding, coding of two tone images, Image compression standards. (Ref.1, Chap.11)

Video Processing: Fundamental Concepts in Video – Types of video signals, Analog video, Digital video, Color models in video, Video Compression Techniques – Motion compensation, Search for motion vectors, H.261, H.263, MPEG 1, MPEG 2, MPEG 4, MPEG 7 and beyond, Content based video indexing. (Ref.4)

Reference Books:

Goal of the course – Advances in Digital Signal Processing involve variable sampling rates and thus the multirate signal processing and hence their applications in communication systems and signal processing. It is intended to introduce a basic course in multirate signal processing especially meant for students of branches eligible for M Tech courses in EC related disciplines.

Introduction and Discrete Fourier Transforms: Signals, Systems and Processing, Classification of Signals, The Concept of Frequency in Continuous-Time and Discrete-Time Signals, Analog-to-Digital and Digital-to-Analog Conversion, Frequency-Domain Sampling: The Discrete Fourier Transform, Properties of the DFT, Linear Filtering Methods Based on the DFT (Ref.1 Chap. 1 & 7)

Design of Digital Filters: General Considerations, Design of FIR Filters, Design of IIR Filters from Analog Filters, Frequency Transformations. (Ref.1 Chap.10)

Multirate Digital Signal Processing: Introduction, EL Dimation by a factor ‘D’, Interpolation by a factor ‘I’, Sampling rate Conversion by a factor ‘I/D’, implementation of Sampling rate conversion, Multistage implementation of Sampling rate conversion, Sampling rate conversion of Band Pass Signals, Sampling rate conversion by an arbitrary factor, Applications of Multirate Signal Processing, Digital Filter banks, Two Channel Quadrature Mirror Filter banks, M-Channel QMF bank. (Ref.1 Chap.11)

Adaptive Filters: Applications of Adaptive Filters, Adaptive Direct Form FIR Filters- The LMS Algorithm, Adaptive Direct Form Filters-RLS Algorithm. (Ref.1 Chap.13)

Reference Books:
Advanced Computer Architecture

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>IA Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>14EVE424</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Lecture Hours /week</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total no. of Lecture Hours</th>
<th>Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Introduction and Review of Fundamentals of Computer Design: Introduction; Classes computers; Defining computer architecture; Trends in Technology; Trends in power in Integrated Circuits; Trends in cost; Dependability, Measuring, reporting and summarizing Performance; Quantitative Principles of computer design; Performance and Price-Performance; Fallacies and pitfalls; Case studies.

Some topics in Pipelining, Instruction –Level Parallelism, Its Exploitation and Limits on ILP: Introduction to pipelining, ILP; Crosscutting issues, fallacies, and pitfalls with respect to pipelining; Basic concepts and challenges of ILP; Case study of Pentium 4, Fallacies and pitfalls. Introduction to limits in ILP; Performance and efficiency in advanced multiple-issue processors.

Memory Hierarchy Design, Storage Systems: Review of basic concepts; Crosscutting issues in the design of memory hierarchies; Case study of AMD Opteron memory hierarchy; Fallacies and pitfalls in the design of memory hierarchies. Introduction to Storage Systems; Advanced topics in disk storage.

Definition and examples of real faults and failures; I/O performance, reliability measures, and benchmarks; Queuing theory; Crosscutting issues; Designing and evaluating an I/O system – The Internet archive cluster; Case study of NetAA FAS6000 filer; Fallacies and pitfalls.

Reference Books:
Reconfigurable Computing

Subject Code : 14 EVE425
IA Marks : 50
No. of Lecture Hours /week : 04
Exam Hours : 03
Total no. of Lecture Hours : 50
Exam Marks : 100

Introduction: Goals and motivations - History, state of the art, future trends - Basic concepts and related fields of study - Performance, power, and other metrics - Algorithm analysis and speedup projections - RC Architectures - Device characteristics - Fine-grained architectures - Coarse-grained architectures.

Architectures: Hybrid architectures - Communication - HW/SW partitioning - Soft-core microprocessors - System architectures - System design strategies - System services - Small-scale architectures - HPC architectures - HPEC architectures - System synthesis - Architectural design space explorations.

Case Study: Case Studies - Signal and image processing - Bioinformatics - Security - Special Topics - Partial Reconfiguration - Numerical Analysis - Performance Analysis/Prediction - Fault Tolerance.

Reference Books: