CBCS SCHEME

First/ Second Semester B.E Degree Examination,

Fundamentals of Electronics and Communication Engineering(1BECE105/205)

TIME: 03 Hours Max.Marks:100

Notes:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

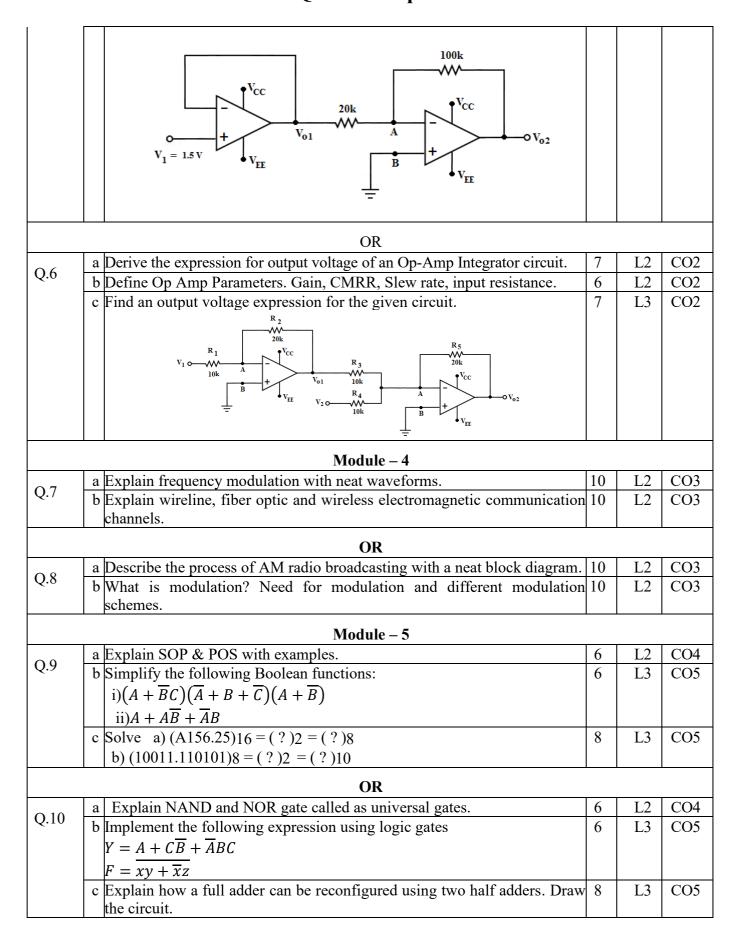
	Module - 1	M	L	С
Q.1	a What is a diode? Explain the operation of PN junction diode under forward and reverse bias condition.	8	L2	CO1
	b With circuit diagram explain the operation of full wave bridge rectifier. Draw the input and output waveforms.	8	L2	CO2
	c Calculate current in the circuit when a silicon diode connected in series with a resistor of 4.7 K Ω is driven by a 15V DC supply.	4	L3	CO1
	OR			
0.2	a Explain Zener as voltage regulator under no load and full load conditions.	8	L2	CO1
Q.2	b Explain the operation of half wave rectifier with capacitor filter.	8	L2	CO2
	Calculate I_F for the diode in the given circuit assuming that V_F =0.7 V and r_d =0.What is the current if we consider r_d =0.2 Ω .	4	L3	CO1
	$1.5V \xrightarrow{I_{\rm F}} R = 10k$			
	Module – 2			
Q.3	a Explain input and output characteristics of BJT in common emitter configuration.	8	L2	CO2
	b Explain various currents and voltages flowing through the BJT transistor.	8	L2	CO2
	c A transistor has β =150 and I _E =12mA, Calculate the approximate collector current (I _C) and Base current (I _B).	4	L2	CO2
	OR			
0.4	a Explain the construction and characteristics of N-channel JFET.	8	L2	CO2
Q.4	b Explain N-channel enhancement type MOSFET and describe the construction and working.	8	L2	CO2
ı	c Define α and β . Determine the relationship between α and β .	4	L2	CO2

	Module – 3			
	a Explain block diagram of typical Op-Amp.	7	L2	CO2
Q5	b Explain the working if an Op-Amp as i) Subtractor ii) Voltage follower.	7	L2	CO2
	c For a summing circuit if $V_1 = +1V$, $V_2 = +3V$ and $V_3 = +2V$ with $R_f = 3K\Omega$, $R_1 = R_2 = R_3 = 2K\Omega$. Determine the output voltage.		L3	CO2
	OR			
	a Explain Op-Amp as an inverting and non-inverting amplifier.	7	L2	CO2
	b Derive the expression for output voltage of an Op-Amp differentiator circuit.	7	L2	CO2
	c Design an amplifier with a gain of +9 and $R_f = 12 \text{ K}\Omega$ using an Op-Amp.	6	L3	CO2
	Module – 4			
Q.7	a With a block diagram explain the basic elements of a communication system.	7	L2	CO3
	b Explain Amplitude modulation with neat waveforms,	7	L2	CO3
	c Explain the concept of mobile wireless telephone systems,	6	L2	CO3
	OR			
0.0	a Explain different communication channels and their characteristics.	7	L2	CO3
Q.8	b With a block diagram, explain superheterodyne receiver,	7	L2	CO3
	c Explain Phase modulation,	6	L2	CO3
	Module – 5			
0.0	a State and prove DeMorgan's theorem for three input variables.	6	L3	CO5
Q.9	b Subtract using 1's and 2's complement method.	7	L3	CO4
	i) (1001) ₂ from (1101) ₂ ii) (1101) ₂ from (1001) ₂			
	c Simplify the Boolean function to minimum number of literals i) P=(xy+x'y+yz) ii) P=(x'y+x(y+z)+y'z')	7	L3	CO4
	OR			
Q.10	a Solve a) $(956.25)_{10} = (?)_2 = (?)_{16}$ b) $(111000111.010001)_2 = (?)_8 = (?)_{16}$	6	L3	CO5
	b Express the Boolean function $F = XY + \overline{X}Z$ in product of maxterm form,	7	L3	CO4
	c Construct and describe full adder with neat logic diagram and truth table. Implement using basic gates,	7	L3	CO4

CBCS SCHEME

First/ Second Semester B.E Degree Examination,

Fundamentals of Electronics and Communication Engineering(1BECE105/205)


TIME: 03 Hours Max.Marks:100

Notes:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

	Module - 1	M	L	C
Q.1	a With appropriate circuit diagram, explain the DC load line analysis of a semiconductor diode.	7	L2	CO1
	b With relevant diagrams explain ideal, practical and piecewise linear characteristic of a PN junction diode.	8	L2	CO1
	c What is Filter? Explain the types of filters.	5	L2	CO1
	OR			
Q.2	a With the circuit diagram explain the operation of center tapped full wave rectifier. Draw the input and output waveforms.	8	L2	CO1
	b Explain the operation of Zener diode along with its characteristics.	7	L2	CO1
	c Calculate the forward and reverse resistances offered by a silicon diode with $I_F = 100 \text{mA}$, $V_F = 0.75 \text{V}$ and $V_R = 50 \text{V}$, $I_R = 1 \mu \text{A}$.	5	L2	CO1
	Module – 2			
Q.3	a Explain input and output characteristics of the common Base configuration.	8	L2	CO2
	b Explain depletion type MOSFET and describe the construction and working.	7	L2	CO2
	c Calculate α_{dc} and β_{dc} for the transistor if $I_C = 1$ mA and $I_B = 25 \mu A$. Determine the new base current to give $I_C = 5$ mA.	5	L3	CO2
	OR			
Q.4	a With neat circuit diagram, explain DC line concept of a transistor amplifier to fix the Q point.	8	L2	CO2
	b Explain the construction and characteristics of P-channel JFET.	7	L2	CO2
	c Calculate I_C and I_E for a transistor that has $\alpha_{dc}=0.98$ and $I_B=100\mu A$. determine the value of β_{dc} for the transistor.	5	L3	CO2

	Module – 3					
Q5	a Briefly discuss the ideal characteristics of the Op-Amp.	7	L2	CO2		
	b Derive the expression of voltage Gain of a i) Non inverting Op-Amp. ii) Inverting Op-Amp.	6	L2	CO2		
	c For an op-amp given the figure find the output voltage $v_{\text{o}1}$ and $v_{\text{o}2}$	7	L3	CO2		

