Model Question Paper-I

CBCS SCHEME

First/ Second Semester B.E Degree Examination,

Introduction to Electronics and Communication (1BESC104C/204C)

TIME: 03 Hours Max.Marks:100

Notes:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

	Module - 1	M	L	C
Q.1	a Draw and explain the block diagram of a power supply system and describe the function of each block.	8	L3	CO1
	b With neat circuit diagram, explain the working of a full-wave bridge rectifier.	6	L2	CO1
	c Describe the operation of a Switched Mode Power Supply (SMPS) with neat diagram.	6	L2	CO1
	OR			
Q.2	a Derive an expression for the gain of an amplifier with negative feedback. Explain how feedback improves performance.	8	L3	CO1
	b What is an amplifier? Explain the types of amplifiers.	6	L2	CO1
	c Define input resistance, output resistance, and phase shift and frequency response in amplifiers.	6	L2	CO1
	Module – 2			
Q.3	a Explain the single state astable oscillator with circuit diagram.	6	L2	CO2
	b List and explain the characteristics and parameters of an ideal operational amplifier.	6	L2	CO2
	c Explain the operation of an Op-Amp integrator and differentiator with circuit diagrams and output waveforms.	8	L3	CO2
	OR			
Q.4	a Explain the operation of three-stage ladder RC network oscillator with neat circuit diagram.	6	L2	CO2
	b Write short notes on crystal controlled oscillator include working principle and waveform.	6	L2	CO2
	c Draw and explain the working of inverting and non-inverting amplifier configurations using Op-Amp. Derive their voltage gain expressions.	8	L3	CO2

	Module – 3			
Q5	a Draw the block diagram of a modern communication system and explain each block briefly.	7	L2	СОЗ
	b Discuss the different types of radio wave propagation, ground, space, and skywaves	7	L2	CO3

Model Question Paper-I

	XX . 1	-	T 2	002
	c Write short notes on noise and its effects in communication systems.	6	L2	CO3
	OR			
Q.6	a Explain Amplitude Modulation (AM) with neat waveform.	7	L2	CO3
	b Describe Frequency Shift Keying (FSK) and Phase Shift Keying (PSK) with neat labelled waveforms.	7	L2	СОЗ
	c Compare analog and digital communication and list advantages of digital communication.	6	L2	CO3
	Module – 4			
Q.7	a Define embedded system and explain the classification of embedded systems based on generation.	10	L2	CO4
	b Discuss the purpose of embedded systems. Differentiate between embedded systems and general-purpose computing systems.	10	L2	CO4
	OR			
Q.8	a Compare RISC and CISC architectures and GPP and ASIP processors	10	L2	CO4
	b Write short notes on sensors, actuators, and LED displays used in embedded systems.	10	L2	CO4
	Module – 5			
Q.9	a Convert the following numbers: i)(101101 ₂ to Decimal and Hexadecimal, ii) (7F) ₁₆ to Binary and Octal.	6	L3	CO5
	b Using basic Boolean theorems prove i) $(x + y) (x + z) = x+yz$ ii) $xy+xz+y\bar{z} = xz+y\bar{z}$	7	L3	CO5
	c Explain 1's and 2's complement methods with examples.	7	L2	CO5
	OR			
Q.10	a Explain the design procedure for combinational logic circuits with a suitable example.	6	L3	CO5
	b Express the Boolean function $F=A+\bar{B}C$ in a sum of min terms.	7	L3	CO5
	c Write short notes on half adder and its truth table.	7	L2	CO5

Model Question Paper-II

CBCS SCHEME

First/ Second Semester B.E Degree Examination,

Introduction to Electronics and Communication (1BESC104C/204C)

TIME: 03 Hours Max.Marks:100

Notes:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

	Module - 1	M	L	C	
Q.1	a With a neat block diagram, explain the working of a regulated DC power supply, clearly describing each stage.	10	L3	CO1	
	b With circuit diagram and waveforms, explain the working of Bi - Phase full wave rectifier.	10	L2	CO1	
	OR				
Q.2	a Explain the frequency response of an amplifier and derive an expression for overall voltage gain of negative feedback amplifier	10	L3	CO1	
	b Draw the circuit of Zener diode voltage regulator, voltage doubler and explain the working of each	10	L2	CO1	
	Module – 2				
Q.3	a State and explain conditions for oscillations and with near circuit diagram explain the working of Wein bridge oscillator	10	L2	CO2	
	c Explain the working of crystal-controlled oscillator and single stage a stable oscillator with circuit diagram.	10	L2	CO2	
OR					
Q.4	a Explain the operation of an inverting amplifier and derive its voltage gain expression.	10	L2	CO2	
	b Describe the working of a differentiator and integrator circuit using an Op-Amp with suitable waveforms.	10	L2	CO2	

Module – 3					
Q5	a Draw the block diagram of a communication system and explain the function of each block.	10	L2	CO3	
	b Explain the concept of noise and briefly the different types of radio wave propagation.	10	L2	CO3	
OR					
Q.6	a What are the advantages of digital modulation over analog modulation? Explain the generation of Frequency Modulation (FM) with neat waveforms.		L2	СОЗ	
	b With waveforms, explain ASK, FSK, and PSK modulation schemes.	10	L2	CO3	
Module – 4					

Model Question Paper-II

Q.7	a Define embedded systems and list its key characteristics. Also list out the major application areas of embedded systems.	10	L2	CO4	
	b Explain the classification of embedded systems based on complexity and performance.	10	L2	CO4	
	OR				
Q.8	a Compare Microprocessor vs Microcontroller in terms of architecture, performance, and applications.	10	L2	CO4	
	b Explain the role of memory, sensors, actuators, and display devices (LED and 7-segment) in embedded systems.	10	L2	CO4	
	Module – 5				
Q.9	a Express the Boolean function $F=xy+\bar{x}z$ in a product of max terms.	10	L3	CO5	
	b Convert: i) (110101) ₂ → Decimal and Octal ii) (25F) ₁₆ → Binary and Decimal.	10	L3	CO5	
	iii) $(41.6875)_{10}^{\rightarrow}$ Octal and Binary				
	OR				
Q.10	a Implement full adder circuit with its truth table and write the expressions for sum and carry.	10	L3	CO5	
	b State and prove De - Morgan's theorems with its, truth table. Subtract the following using 10's complement i) (72532 - 3250) ₁₀ ii) (3250 -72532) ₁₀	10	L3	CO5	