Model Question Paper-I with effect from 2025

USN 1BMATC101

First Semester B.E./B.Tech. Degree Examination Differential Calculus and Linear Algebra

TIME: 03Hours Max.Marks:100

Note: 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE

2. VTU Formula Hand Book is Permitted

3. M: Marks, L: Bloom's level, C: Course outcomes

		Module-1	M	L	CO				
Q 1.	a	With usual notations, prove that $tan(\emptyset) = r \frac{d\theta}{dr}$.	6	L2	1				
	b	Find the angle between pair of curves, $r \sec^2\left(\frac{\theta}{2}\right) = 2a$,	7	L2	1				
		$r cosec^2(\frac{\theta}{2}) = 2b.$							
	c	Find the pedal equation of the curve $r^n = a^n cosn\theta$.	7	L2	1				
OR									
	a	Find the radius of curvature of the curve $x^3 + y^3 = 3axy$, at the point	6	L2	1				
Q 2.		$\left(\frac{3a}{2},\frac{3a}{2}\right)$.							
	b	Find the radius of curvature of the parametric curve	7	L2	1				
		x = a(t - sint), y = a(1 - cost). Show that ρ varies inversely as r^{n-1} for the curve $r^n = a^n \sin(n\theta)$,	7	10	1				
	c	Show that ρ varies inversely as r^{n-1} for the curve $r^n = a^n \sin(n\theta)$, Module-2	-7	L2	1				
Q 3.	a	Obtain the series of the function $y = \log(1 + \cos x)$ upto the term contains x^4	6	L2	1				
	b	Evaluate (i). $\lim_{x \to a} \left(\frac{x^x - a^x}{x^a - a^a} \right)$ and (ii). $\lim_{x \to 0} \frac{\sinh(x) - x}{\sin(x) - x \cos(x)}$.	7	L2	1				
	c	If $u = x^3 - 3xy^2 + x + e^x \cos y + 1$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	7	L2	1				
OR									
Q 4.	a	If $z = f(x, y)$ where $x = e^u sinv$ and $y = e^u cosv$ then prove that	6	L2	1				
		$\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left\{ \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 \right\}$							
	b	If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$ show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 4$	7	L2	1				
	c	Find the extreme value of the function $f(x,y) = x^3 + y^3 - 3x - 12y + 20$	7	L2	1				
$\frac{1}{y(x,y)-x+y} = \frac{3x+2y+20}{x+2y+20}$ Module-3									
Q 5.	a	Solve the differential equation $\cos x dy = y(\sin x - y) dx$	6	L2	1				

	b	Solve the differential equation $(x - y)dx - dy = 0$, $y(0) = 2$	7	L2	1				
	c	Solve the differential equation	7	L2	1				
		$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$							
OR									
Q 6.	a	Find the orthogonal trajectories of $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is the parameter.	6	L2	1				
	b	A bacterial population B is known to have a rate growth proportional to B itself. If between noon and 2PM the population triples, at what time no controls being exerted, should B become 100times what it was at noon.	7	L3	1				
	c	Radium decomposes at a rate proportional the quantity of radium present. Suppose that it is found that in 25 years approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long will it take for half of the original amount of radium to decompose.	7	L3	1				
Module-4									
Q 7.	a	Solve $y^{111} - 3y^{11} - y^1 + 3y = 0$ Solve $(D^2 - D + 1)y = \sinh x$	6	L2	1				
	b	Solve $(D^2 - D + 1)y = sinhx$	7	L2	1				
	c	Solve $(D^2 + 5D - 6)y = \sin 4x \sin x$	7	L2	1				
		OR			ı				
	a	Solve $(D^2 + 1)y = cosx$ by the Method of variation of parameters.	6	L2	1				
Q 8.	b	Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx}$ $5y = x^2 cosx(log x)$	7	L2	1				
	c	Construct the governing equation of the free, damped motion of a mass?	7	L2	1				
		Module-5			·L				
Q 9.	a	Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & 7 \end{bmatrix}$	6	L2	2				
	b	Test for the consistency of the following system and then solve x-2y+3z=2, 3x-y+4z=4, 2x+y-2z=5.	7	L2	2				
	c	Solve the following system of equation by Guass elimination method $2x_1 + 2x_2 + x_3 + 2x_4 = 7$, $-x_1 + 2x_2 + x_4 = -2$, $-3x_1 + x_2 + 2x_3 + x_4 = -3$, $-x_1 + 2x_4 = 0$.	7	L3	2				
	1	$\frac{1 + 2n_1 + n_2 + 2n_3 + n_4}{OR}$		1	1				
	a	Solve the following system of equations by Gauss seidel method	6	L3	2				
Q 10.	-	10x + y + z = 12, $x + 10y + z = 12$, $x + y + 10z = 12$							
	b	Apply power method to find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} -2 & 2 & 3 \\ 2 & 1 & 6 \\ 3 & 6 & -2 \end{bmatrix}$.	7	L3	2				
	c	Diagonalize the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$.	7	L2	2				