Model Question Paper-I with effect from 2025

I	
---	--

First Semester B.E./B.Tech. Degree Examination Differential Calculus & Linear Algebra

TIME: 03Hours Max.Marks:100

Note: 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE

- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes

		Module-1	M	L	С			
Q 1.	a	With usual notations, prove that $tan\emptyset = r\frac{d\theta}{dr}$.	6	L2	1			
	b	Show that the angle of intersection of the curves $r = a \log \theta$ and	7	L2				
		$r = a/\log \theta$ is $tan^{-1} \left[\frac{2e}{1 - e^2} \right]$.			1			
	С	Show that the radius of curvature at $x = \frac{\pi}{2}$ of the curve $y = 4sinx - \frac{\pi}{2}$	7	L2	4			
		$sin2x$ is $\frac{5\sqrt{5}}{4}$.			1			
		OR	1	ı	I			
Q 2.	a	With usual notations, prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	6	L2	1			
	b	Find the angle of intersection of the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$	7	L2	1			
	С	Find the radius of curvature using pedal form for the curves, $r^2sec2\theta = a^2$	7	L2	1			
		Module-2	1		•			
	a	Expand $log (secx)$ in powers of x as far as the term in x^4 .	6	L2	1			
Q 3.	b	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$ prove that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.	7	L2	1			
	c	Examine the function for extreme values $f(x,y) = x^3y^2(1-x-y)$.	7	L2	1			
		OR			<u> </u>			
	a	Evaluate $\lim_{x\to a} \left(2 - \frac{x}{a}\right)^{\tan(\pi x/2a)}$	6	L2	1			
	b	If $x + y + z = u$; $y + z = v$; $z = uvw$ then find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	7	L2	1			
Q 4.	c	Show that a differential equation for the current <i>i</i> in an electrical	7	L3				
·		circuit containing an inductance L and resistance R in series and acted on by an electromotive force $Esin\omega t$, satisfies the equation			1			
		$L\frac{di}{dt} + Ri = Esin\omega t$. Find the value of the current at any time t, if						
		initially there is no current in the circuit.						
	Module-3							
Q 5.	a	Solve $\left(xy^2 - e^{1/x^3}\right) dx - x^2 y dy = 0$ Solve for p. $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	6	L2	1			
	b	Solve for p. $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	7	L2	1			

	С	A rectangular box open at the top is to have volume of 32 cubic ft.	7	L3	
		Find the dimensions of the box requiring least material for its construction.			1
	-	OR		<u> </u>	
Q 6.	a	Solve $\frac{dy}{dx} + \frac{yCosx + Siny + y}{Sinx + xCosy + x} = 0$	6	L2	1
	b	Show that the family of parabolas $y^2 = 4a(x + a)$ is self-orthogonal.	7	L2	1
	С	Solve the equation $(px - y)(py + x) = 2p$ by reducing into Clairault's form, by taking the substitutions $u = x^2$ and $v = y^2$.	7	L2	1
	1	Module-4			
	a	Solve $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x$	6	L2	1
Q 7.	b	Solve by variation of parameter method $\frac{d^2y}{dx^2} + y = \frac{1}{1 + sinx}$	7	L2	1
	С	Solve $x^2y'' + xy' + y = 2\cos^2(\log x)$	7	L2	1
	1	OR		1	1
	a	Solve $\frac{d^2y}{dx^2} - 4y = 3^x + \cosh(2x - 1)$	6	L2	1
Q 8.	b	Solve $(3 + 2x)^2 \frac{d^2y}{dx^2} + 5(3 + 2x) \frac{dy}{dx} + y = 4x$	7	L2	1
	С	Solve by variation of parameter method $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = \frac{1}{1 - e^x}$	7	L2	1
	1	Module-5		ı	
	a	Find the rank of the following matrices by reducing into row	6	L2	
		echelon form. $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$			2
Q 9.	b	Solve by Gauss – Seidel iteration method: $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$	7	L2	2
	С	Determine the dominant Eigen value and the corresponding Eigen	7	L2	
		vector of the following matrix by using Rayleigh's power method. $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$			2
	-	OR			
	a	Investigate the values of λ and μ so that the equation	6	L2	
		$2x + 3y + 5z = 9$; $7x + 3y - 2z = 8$; $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solution.			2
Q 10.	b	Solve by Gauss elimination method: 2x + y + z = 10; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$.	7	L2	2
	С	Find the Eigen values and Eigen vectors of the following matrix [8 -6 2]	7	L2	
		$\begin{bmatrix} -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$			2