Model Question Paper

USN											Course Code: 1BPHYC102
-----	--	--	--	--	--	--	--	--	--	--	------------------------

First Semester B.E. Degree Examination, January 2026 Physics for Sustainable Structural Systems (CV Stream)

TIME:3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE question from each MODULE

2. VTU Formula Hand Books Permitted

3. M: Marks, L: Bloom's level, C: Course outcomes.

	M	L	C							
Q.01	a	Module - I Define Stiffness factor of a spring and hence derive an expression for the effective spring constant of springs in series and Parallel combinations.	07	L2	CO1					
	b	Setup the differential equation for damped oscillations. Explain overdamping, critical damping and under damping by graph.	08	L2	CO1					
	c	A body of mass 500 gm is attached to a spring and the system is driven by an external periodic force of amplitude 15 N, and frequency 0.796 Hz. The spring extends by a length of 88 mm under the given load. Calculate the amplitude of oscillation, if the resistance coefficient of the medium is 5.05 kg/s. Ignore the mass of the spring.	05	L3	CO1					
OR										
Q.02	a	Explain various forces acting on a system under forced vibration and discuss the three cases	09	L2	CO1					
	b	Define resonance? Discuss the sharpness of resonance.	06	L2	CO1					
	c	A vibrating system of natural frequency 500 cycles/second, is forced to vibrate with a periodic force/unit mass of amplitude 100 x 10 ⁻⁵ N/kg in the presence of a damping/unit mass of 0.01x10 ⁻³ rad/s. Calculate the maximum amplitude of vibration of the system.	05	L3	CO1					
		Module - II								
	a	Enumerate the causes and adverse effects of tsunami waves.	07	L2	CO2					
Q.03	b	Mention the types of waves. Explain wave propagation in beams, rods, and slabs.	08	L2	CO2					
	c	The intensity of one earthquake is 100 times the intensity of the other. If the magnitude of the first earthquake is 8.0 estimate the magnitude of the other.	05	L3	CO2					
		OR								
	a	Define ground motion and list its key parameters? Explain the structural response and soil-structure interaction.	08	L2	CO2					
Q.04	b	Discuss the Engineering structures to withstand earthquakes and Tsunami waves.	07	L2	CO2					
	c	Calculate the intensity of earthquake of magnitude 6.0 assuming the base intensity as I ₀ .	05	L3	CO2					
Module - III										
Q.05	a	Discuss the factors affecting acoustics of buildings and remedial measures.	09	L2	CO3					
	b	Elucidate the impact of noise in multi-storied buildings.	06	L2	CO3					

	c	A Lambertian surface has luminous intensity $I(0^{\circ})=50.0$ cd in the normal direction. Using Lambert's cosine law, what is the luminous intensity at $\theta=60^{\circ}$? What fraction of the normal intensity is this?	05	L3	СОЗ
		OR			
	a	Define Photometry? Explain Photometric quantities	08	L2	CO3
Q.06	b	Discuss the measurement of absorption coefficient of absorbing materials using Sabine's formula.	07	L2	CO3
	c	The volume of an auditorium is 12000 m ³ . Its reverberation time is 1.5 second. If the average absorption coefficient of interior surfaces is 0.4 Sabine m ⁻² . Find the area of interior surfaces.	05	L3	СОЗ
		Module - IV			
	a	Describe the principle process and qualitative considerations of Liquid Penetration Test.	07	L2	CO4
Q.07	b	Describe the generation of ultrasonic and its role of probes. Mention the types of probes.	08	L2	CO4
	С	Speed of sound in a steel block is 5900 m/s. The observed Front-wall echo is at 2 µs and back-wall echo at 26 µs. Find the thickness of the specimen.	05	L3	CO4
		OR			
	a	Describe the inspection probes and display methods in eddy current testing.	08	L2	CO4
	b	Discuss the the shadow formation and distortion in radiography.	07	L2	CO4
Q.08	c	The mass attenuation coefficient of steel is $\mu/\rho=0.00500 \text{ m}^2/\text{kg}$, and the steel density is $\rho=7850 \text{ kg/m}^3$. Given the plate thickness $x=0.012$ m calculate the transmitted fraction of radiation I/I_0 .	05	L3	CO4
		Module - V			
	a	Explain the qualitative discussion on types of smart materials.	08	L2	CO5
Q.09	b	Describe the concept of structural health monitoring.	07	L2	CO5
	С	A metallic strain gauge has nominal resistance $R=120.0 \Omega$ and a gauge factor GF=2.05. If the specimen strain is $\epsilon=600 \mu\epsilon$, calculate the expected change in resistance ΔR (in ohms).	05	L3	CO5
		OR		•	
	a	Deduce the classification of sensors? Explain the working of temperature sensors and mention its advantages.	07	L2	CO5
Q.10	b	Describe the principle of piezoelectric materials and Explain the working and principle of sensors technology.	08	L2	CO5
	c	A piezoelectric disk has a charge coefficient d=200×10 ⁻¹² CN ⁻¹ under an applied compressive force F=50.0 N. If the disk is connected to an input stage with an effective capacitance C=50.0 pF, compute the open-circuit voltage V in millivolts (mV).	05	L3	CO5
