Model Question Paper-1 with effect from 2021-22 (CBCS Scheme)

Fourth Semester B.E. Degree Examination

Subject Title Bioprocess Principles, Control

&Automation + Lab

Time : 3 hours			lax marks: 100							
Note : Answer any FIVE full questions, choosing ONE full questions from each module										
Module-1										
1	a.	Why instrumentation is required in a bioreactors? What								
		are the parameters to be measured and controlled in a	CO1	L1	10					
		bioreactor								
	b.	With neat diagram, explain the principle and working	3 001	12	10					
		of any two flow measuringinstrument	001	LZ	10					
Or										
2	a.	With a neat sketch explain Flow injection analysis	CO1	L2	10					
	b.	With neat diagram, explain the principle and working	3 CO1	12	10					
		of any two pressure measuringinstrument	01	LZ	10					
Module-2										
3	a.	Derive the transfer function for liquid level in tank with	<u> </u>	11	10					
		respect to output.	02	LT	10					
	b.	A thermometer having at time constant of 0.1 minute is	;							
		at a steady state temperature at 90° C. At time t = 0 , it is	\$	12	10					
		placed in a temperature bath of 100 ^o C. Determine the	02	LZ	10					
		time needed to read 98 ⁰ C								
		Or								
4	a.	Derive the transfer function for two tank non interactir	g cos	11	10					
		system.	005	LT	10					
	b.	Derive the linear response equation for first order syste	m CO3	L2	10					
Module-3										
5	a.	Derive the transfer function for Spring damper	CO4	L2	10					
	b.	Derive a Step response equation for second order	CO4	12	10					
		system.	04	LS	10					
		Or								
6	a.	Define the following terms used to describe an under								
		damped system with the graph :								
		i) Overshoot ii) Decay ratio iii)	CO4	11	10					
		Response time IV) Rise time	001		10					
		v) Period of oscillation vi) Natural period of								
	1	oscillation.								
	b.	Derive the transfer function for Transportation lag.	CO4	L3	10					
<u>Module-4</u>										
/	a.	Explain with equations the principle of PI and PID	CO5	L3	10					
	1	controllers and derive their transferfunction.								
	b.	Derive the transfer function for regulatory problem wit	h CO5	L4	10					
		neat block diagram.			-•					
	Or									

21BT62

8	a.	Write short note on Final control element and its types.	CO5	L1	10				
	b.	Explain with equations the principle of PD and P controllers and derive their transferfunction.	CO5	L3	10				
Module-5									
9	a.	For the Control system described by the following characteristic equation, check the number of roots having positive real parts $S^4 + 3S^3 + 5S^2 + 4S + 2 = 0.$	CO5	L3	10				
	b.	Draw a Bode diagram for a first order system.	CO5	L4	10				
Or									
10	a.	Explain the merits and demerits of Routh test.	CO5	L4	10				
	b.	For the given Open loop transfer functions find out the range of K for which the system isstable. What will be the frequency of sustained oscillation? $G(s) = \frac{K}{(S+1)(50s2+1)(2S+0.5)}$	CO5	L3	10				