Model Question Paper-1 with effect from 2021-22 (CBCS Scheme)

Sixth Semester B.E. Degree Examination

Subject Title: Enzyme Technology

Max marks: 100

Time : 3 hours Max marks: 100							
Note : Answer any FIVE full questions, choosing ONE full questions from each module							
<u>Module-1</u>							
1	a.	Describe the basic structure of enzymes and explain how this					
		structure enables them to perform their biological functions	CO1 L	L1	10		
		within cells.					
	b.	Following the guidelines established by the Enzyme					
		Commission, categorize enzymes into different groups and	CO1 L2	12	10		
		provide an example for each group to demonstrate your		L2	10		
		understanding.					
Or							
2	a.	Outline the various methods used for purifying enzymes from	CO1 L1	Т 1	10		
		their sources		LI	10		
	b.	Explain the diverse mechanisms involved in enzyme-catalyzed	COL	тэ	10		
		reactions.	CO1	L2	10		
Module-2							
3	a.	How does Flavin nucleotide act as a coenzyme?	CO2	L1	10		
	b.	Discuss the differences between enzyme activity	COL	тa	10		
		measurements using fixed incubation and kinetic methods	CO2	L2	10		
		Or					
4	a.	Describe the role of Nicotinamide nucleotide as a coenzyme.	CO2	L1	10		
	b.	How to standardize and optimize enzyme assays for research		T O	10		
		and industry?	CO2	L2	10		
		Module-3					
5	a.	Explain the process of standardizing and optimizing rapid,	CO2 L2				
		reliable, and reproducible enzyme assays for use in both		L2	10		
		research and industry.					
	b.	Analyze the differences in kinetics between enzyme-catalyzed		L3	10		
		reactions of immobilized enzymes and free enzymes, and	002				
		evaluate how these differences impact reaction rates and	CO3				
		efficiency.					
	-	Or					
6	a.	Describe how immobilized amino acid acylase is used to	002	1.2	10		
		separate racemic mixtures	CO2	L2	10		
	b.	Examine the kinetics of immobilized enzymes, specifically in	002	т э	10		
		relation to solute partition and solute diffusion mechanisms.	CO3	L3	10		
	•	Module-4		•			
7	a.	Analyze the application of molecular imprinting techniques in	CO2	L3	10		
		incorporating remote functionalization mechanisms into					
		steroid templates of artificial enzymes.					
	b.	Develop strategies to identify and resolve host-guest					
		complexation chemistry between enzymes and substrates,	CO3 L4	. .	10		
		enabling the rational and confident design of synthetic		L4			
		enzymes tailored to perform specific functions and tasks.					
	I	enzymes anorea to perform specific functions and asks.	L		1		

21BT63

Or							
 Develop a comprehensive approach integrating chemical and biological methods to transform progesterone into therapeutically superior adrenal hormones like prednisolone, employing hydroxylation and dehydrogenation mechanisms. 	CO2	L3	10				
 Analyze the multifaceted role of angiotensin-converting enzyme within the renin-angiotensin-aldosterone system (RAAS), elucidating its pivotal significance in the management of conditions including high blood pressure, heart failure, diabetic nephropathy, and type 2 diabetes mellitus. 	CO3	L4	10				
Module-5							
Explain the diagnostic process of myocardial infarction using isoenzyme levels.	CO3	L3	10				
 Formulate a comprehensive strategy for utilizing patterns of enzymes in blood samples to trace diseases such as liver necrosis. 	CO3	L4	10				
Or							
 Devise a detailed manufacturing strategy aimed at substituting hazardous chemical ingredients in domestic detergents with enzymes that demonstrate efficient performance under mild conditions. 	CO3	L4	10				
Describe how enzymes are applied in wool processing.	CO3	L3	10				
cond	itions.	itions.	itions.				