Model Question Paper-1 with effect from 2021-22 (CBCS Scheme)

Sixth Semester B.E. Degree Examination

Subject Title: Biochemical Thermodynamics and Bioenergetics

Time: 3 hours Max marks: 100

Time: 3 hours Max marks: 100									
N	lote:	Answer any FIVE full questions, choosing ONE full questions fi	rom eac	ch mo	dule				
		Module-1							
1	a.	Define the following with suitable examples:							
		(i) Closed and open system.	CO1	L1	10				
		Intensive and extensive properties							
	b.	Explain the carnot cycle with P-V coordinates and give the equation	~ ~ 1		1.0				
		for efficiency of reversible heat engine.	CO1	L2	10				
	1	Or		ı					
2	a.	A system consisting of some fluid is stirred in a tank. The rate of							
-		work done on the system by the stirrer is 2.25 hp. The heat							
		generated due to stirring is dissipated to the surroundings. If the heat	CO1	L3	10				
		transferred to the surrounding is 3400 KJ/h, determine the change in							
		internal energy.							
	b.	Derive first law of thermodynamics for steady state flow process	CO1	L2	10				
Module-2									
3	a.	With a neat sketch, explain PVT behaviour of pure fluids.	CO2	L1	10				
	b.	Derive the equation to calculate the workdone in an adiabatic							
		process from fundamental	CO2	L2	10				
	1	Or		l	1				
4	a.	Prove that $Cp-Cv = R$	CO3	L2	10				
'	b.	Write a note on law of corresponding states and compressibility							
	0.	factor chart	CO3	L2	10				
	1	Module-3			1				
5	a.	Derive the Maxwell's equation, from thermodynamics.	CO4	L2	10				
	b.	Calculate the fugacity of liquid water at 303 K and 10 bar if			10				
	0.	the saturation pressure at 303 K is 4.241 KPa and the							
			CO4	L3	10				
		specific volume of liquid water at 303 K is $1.004 \square 10^{\square 3}$	CO4	L3	10				
		m ³ /kg.							
	1	Or		1	_				
6	a.	Differentiate between reference properties, energy properties and	CO4	L2	10				
	1	derived properties.							
	b.	Explain the effect of temperature and pressure on fugacity	CO4	L2	10				
	1	Module-4		1					
7	a.	Derive Gibbs Duhem equation and static its uses	CO5	L3	10				
	b.	Define chemical potential and derive an expression to show how it	CO5	L1	10				
		varies with temperature and pressure		LI	10				
		Or							
8	a.	Briefly explain Azeotropes with suitable systems and VLE plots.	CO5	L2	10				
	b.	Explain consistency test for VLE (Vapour Liquid Equilibria) data	CO5	L3	10				
		using slope of ln ⊂ curves		ட்	10				
		<u>Module-5</u>							
9	a.	A gas mixture containing 3 mol CO ₂ , 5 mol H ₂ and 1 mol	CO5	L3	10				
		water is undergoing the following reactions:		LS	10				

		$CO_2 \square 3H_2 \square CH_3OH \square H_2O$			
		$CO_2 \square H_2 \square CO \square H_2O$			
		Develop expressions for the mole fraction of the species in terms of the extent of reaction.			
	b.	Show that equilibrium constant and standard free energy change is given by $\Box G^{\perp} \ \Box \ \Box RT \textit{l} nK$	CO5	L4	10
		Or	1	<u>I</u>	
10	a.	The standard heat of formation and standard free energy of formation of ammonia at 298 K are □ 46,100 J/mol and 16,500 J/mol respectively. Calculate the equilibrium constant for the reaction, N2 (g) + 3H2 (g) → 2NH3 (g) at 500 K assuming that the standard heat of reaction is constant in the temp range 298 to 500 K.	CO5	L4	10
	b.	Discuss heterogeneous reaction equilibria for, (i) Reactions in solutions and Equilibria involving pure solids and liquids.	CO5	L3	10