21EC732 Model Question Paper-1/2 with effect from 2021(CBCS Scheme)

USN

7th Semester B.E. Degree Examination

Digital Image Processing

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

	n	Module -1	BTL	COs	Marks
Q.01	a	What is digital image processing? Explain the applications of image processing.	L2	CO1	10
	b	With a black diagram explain the fundamental steps involved in digital image	L2	CO1	10
		processing.			
		OR			
Q.02	а	With the help of a neat diagram, explain the components of a general purpose	L2	CO1	10
		image processing system.			
	b	Explain the image acquisition using sensor strips and sensor arrays	L2	CO1	10
	1	Module-2			
Q. 03	а	Explain DCT with equation and hence obtain 2X2 DCT matrix	L2	CO2	10
	b	Explain the Two-Dimensional Orthogonal and Unitary Transforms	L2	CO2	10
		OR			
Q.04	a	Explain Haar Transforms with equation and hence obtain 2X2 Haar Transform matrix	L2	CO2	10
	b	State the following properties of 2D DFD	L2	CO2	10
	Ŭ	i) Translation ii) Periodicity iii) Rotation iv) Convolution theorem.		002	10
		Module-3			
Q. 05	a	With necessary graphs explain the log and power law transformation used for	L2	CO3	10
		spatial image enhancement			
	b	Discuss local histogram processing	L2	CO3	10
		OR			
Q. 06	a	Explain image sharpening in spatial domain using second order derivative	L2	CO3	10
		filters			
	b	Elaborate order-statistics filters	L2	CO3	10
		Module-4			
Q. 07	а	Explain smoothing of images in frequency domain using Ideal, Butterworth and	L2	CO4	10
		Gaussian low pass filter.			
	b	Describe the process of RGB to HSI conversions with mathematical equations	L2	CO4	10
	1	OR			
Q. 08	a	Discuss the homomorphic filtering approach for image enhancement.	L2	CO4	10
	b	With a neat sketch, explain color chromaticity diagram.	L2	CO4	10
	1	Module-5			
Q. 09	a	Explain the model of the image degradation/restoration process.	L2	CO5	10
	b	Explain Noise models along with Equations	L2	CO5	10
	1	OR			
Q. 10	а	what are adaptive filters? Explain adaptive local noise reduction and adaptive	L2	CO5	10
		median filter with the algorithms.		965	10
	b	Assuming only the presence of noise in an image, explain the following mean	L2	CO5	10
		filters.			
	1	i) automatic mean filter ii) geometric mean filter			

21EC732 Model Question Paper-1/2 with effect from 2021(CBCS Scheme) USN 7th Semester B.E. Degree Examination DIGITAL IMAGE PROCESSING

TIME: 03 Hours

Max. Marks: 100

- Note: 01. 02. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.
 - 03. 04.

 a What is Digital Image Processing? Explain the origin of Digital Image Processing. b Explain the Fundamental steps in Image Processing with block diagram OR a With neat block diagram, explain the components of an Image Processing System. b Briefly Explain the Elements of Visual Perception 	L1 L1 L1 L1	CO1 CO1 CO1	10 10 10
OR a With neat block diagram, explain the components of an Image Processing System.	L1	CO1	
a With neat block diagram, explain the components of an Image Processing System.			10
a With neat block diagram, explain the components of an Image Processing System.			10
b Briefly Explain the Elements of Visual Perception	L1	~ ~ .	1
		CO1	10
Module-2			
a What is the need for an image transform? State 2D orthogonal unitary transform with its properties.	L2	CO2	10
b State and prove the properties of DFT.	L2	CO2	10
OR			
a Compute Discrete Cosine transform for N=4.	L3	CO2	10
b Explain the algorithmic steps in Haar Transform.	L2	CO2	10
Module-3			
a Define histogram. Explain the concept of histogram processing.	L2	CO3	10
b Explain the sharpening filters in spatial domain for image enhancement.	L3	CO3	10
OR			
a Define histogram equalization. How image is enhanced using this method.	L2	CO3	10
b Illustrate Homomorphic filtering in image enhancement	L2	CO3	10
b a b b a	transform with its properties. State and prove the properties of DFT. OR Compute Discrete Cosine transform for N=4. Explain the algorithmic steps in Haar Transform. Module-3 Define histogram. Explain the concept of histogram processing. Explain the sharpening filters in spatial domain for image enhancement. OR Define histogram equalization. How image is enhanced using this method.	What is the need for an image transform? State 2D orthogonal unitary transform with its properties. L2 State and prove the properties of DFT. L2 OR L3 Compute Discrete Cosine transform for N=4. L3 Explain the algorithmic steps in Haar Transform. L2 Module-3 L2 Define histogram. Explain the concept of histogram processing. L2 OR L2 Define histogram equalization. How image is enhanced using this method. L3	What is the need for an image transform? State 2D orthogonal unitary transform with its properties.L2CO2State and prove the properties of DFT.L2CO2ORIIIIIIICO2Compute Discrete Cosine transform for N=4.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

21EC732

		Module-4					
Q. 07	a	Explain the smoothing filters in frequency domain for image enhancement	L2	CO4	10		
	b	Explain RGB and HIS color models.	L2	CO4	10		
		OR					
Q. 08	a	Explain the sharpening filters in frequency domain for image enhancement.	L2	CO4	10		
	b	Explain the concept of pseudocolor image processing.	L2	CO4	10		
		Module-5					
Q. 09	a	With the help of block diagram, explain the Image Degradation/Restoration process.	L2	CO5	10		
	b	Expalin how filtering is done in Inverse filter	L2	CO5	10		
		OR					
Q. 10	a	Explain the following a) periodic noise b) Estimation of noise parameters.	L2	CO5	10		
	b	Explain the filters used for image restoration in the frequency domain.	L2	CO5	10		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

21EC732 Model Question Paper-2/2 with effect from 2021(CBCS Scheme) USN 7th Semester B.E. Degree Examination DIGITAL IMAGE PROCESSING

TIME: 03 Hours

Max. Marks: 100

Note: 01. 02. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

03. 04.

		Module -1	*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Explain the structure of eye with neat sketch.	L1	CO1	10
	b	. Briefly explain the following a.Neighbors of a pixel b. path and connectivity c.Distance function d.Euclidean distance e.City block and checker board distance	L1	CO1	10
		OR			
Q.02	a	Illustrate Image Sampling and Quantization with an example.	L1	CO1	10
	b	Explain 4,8 and m adjacency with example.	L1	CO1	10
		Module-2			
Q. 03	a	Define Discrete Cosine transform and state its properties.	L2	CO2	10
	b	Perform Haar Transform for N=2 .	L2	CO2	10
		OR			
Q.04	a	Compute Discrete Cosine transform for N=4.	L3	CO2	10
	b	Discuss the steps in Hadamard transform and compute for N=4.	L2	CO2	10
		Module-3			
Q. 05	a	Perform Histogram equalization of the image 4 4 4 4 4 3 4 5 4 3 3 5 5 5 3 3 4 5 4 3 4 5 4 3 4 4 4 4 4	L2	CO3	10
	b	Briefly explain contrast stretching and bitplane slicing.	L2	CO3	10
-	1	OR			
Q. 06	a	Explain the basic intensity transformations.	L2	CO3	10
	b	Explain the smoothing filters in spatial domain for image enhancement.	L2	CO3	10

21EC732

-					-
		Module-4			
Q. 07	a	Explain with block diagram the basic steps for image filtering in frequency domain.	L2	CO4	10
	b	Explain the conversion steps of RGB color model to HIS color model.	L2	CO4	10
		OR			
Q. 08	a	Explain the smoothing filters in frequency domain for image enhancement.	L2	CO4	10
	b	What is the necessity of color model. Convert HIS color model to RGB color model.	L2	CO4	10
		Module-5			
Q. 09	a	Explain Alpha-trimmed mean filter and Adaptive median filter.	L2	CO5	10
	b	Derive the expression for MSE and SNR in Wiener filter or Minimum mean square Error filter.	L2	CO5	10
		OR			
Q. 10	a	Discuss the different noise models with their probability Density Functions(PDF).	L2	CO5	10
	b	Explain the filters used for image restoration in the presence of noise or spatial filtering.	L2	CO5	10

21EC732 Model Question Paper-1/2 with effect from 2021(CBCS Scheme) USN Tth Semester B.E. Degree Examination Digital Image Processing

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Explain the Fundamental Steps in Digital Image Processing	L2	CO1	8 M
	b	Elements of Visual Perception with human eye diagram	L2	CO1	8 M
	c	Consider the two image subsets, S_1 and S_2 in the following figure.	L3	CO1	4 M
		and assuming that $V = \{1\}$, determine whether these two subsets			
		are 4, 8 and m- adjacent			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		OR			
Q.02	a	Explain the origin and the fields that use Digital Image Processing	L2	CO1	8 M
	b	Explain Image Sensing and Acquisition using single sensor and	L2	CO1	8 M
		line sensor			
	с	Consider the image segment shown in the figure. Let $V = \{0, 1\}$ be the set of intensity values used to define adjacency. Compute the lengths of the shortest 4-, 8-, and <i>m</i> -path between <i>p</i> and <i>q</i> in the following image. If a particular path does not exist between these two points, explain why.	L3	CO1	4 M
		$3 \ 1 \ 2 \ 1(q)$			
		2 2 0 2			
		$1 \ 2 \ 1 \ 1$			
		(p) 1 0 1 2			
		Module-2			
Q. 03	a	Explain the two-Dimensional Orthogonal transform along with its	L2	CO2	10 M
		properties			
	b	Derive a 4 X 4 cosine Transform matrix and hence mention	L2	CO2	10 M
		properties of DCT			
		OR			
Q.04	a	Explain the properties of Two-Dimensional DFT	L2	CO2	10 M
	b	Derive a 4 X 4 Haar Transform matrix and hence mention properties of Haar transforms	L2	CO2	10 M

21EC732

		Module-3			
Q. 05	a	Explain piecewise linear transformation functions	L2	CO3	8 M
	b	Explain the concepts of Bit plane slicing and intensity slicing	L2	CO3	8 M
	с	Propose a method for extracting the bit planes of an image based	L3	CO3	4 M
		on converting the value of its pixels to binary. Find all the bit			
		planes of the following 4-bit image:			
		0 1 8 6			
		2 2 1 1			
		1 15 14 12			
		3 6 9 10			
		OR			
Q. 06	a	Explain the Fundamentals of Spatial Filtering	L2	CO3	8 M
	b	Explain the working of Sharpening Spatial Filters and hence obtain	L2	CO3	8 M
		Laplacian filter coefficients			
	с	Perform Histogram Equalization for the following 2 bit image	L3	CO3	4 M
		0 0 1 2			
		2 3 3 1			
		1 2 1 3			
		2 3 2 3			
		Module-4			
Q. 07	a	Explain the basics of Filtering in the Frequency Domain	L2	CO4	10 M
	b	Explain Image Sharpening Using Frequency Domain Filters.	L2	CO4	10 M
		OR			
Q. 08	a	Explain RGB and HSI Color Models	L2	CO4	10 M
	b	Explain Pseudo-color Image Processing.	L2	CO4	10 M
		Module-5			
Q. 09	a	Explain model of the Image Degradation/Restoration Process,	L2	CO5	10 M
	b	Explain Noise models	L2	CO5	10 M
	ı	OR			
Q. 10	a	Explain the working of Adaptive median and adaptive local noise	L2	CO5	10 M
		reduction filters			
	b	Explain the working of Minimum Mean Square Error (Wiener)	L2	CO5	10 M
		Filtering.			
L	•				