Model Question Paper-1/2 with effect from 2021(CBCS Scheme)

USN										
	7 th Semester B.E. Degree Examination									

Subject Title: Machine Learning with Python

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Discuss types of Machine Learning with examples.	L1	1	10M
	b	Illustrate the adaptive linear neurons(Adaline) in Machine Learning system	L2	1	10M
		OR			
Q.02	a	Describe the process in building machine learning systems.	L1	1	10M
	b	Illustrate the perceptron learning Rule in Machine Learning system Module-2	L2	1	10M
0.02			т 1	2	10) (
Q. 03	a	Describe how to train a perceptron using Scikit Learn	L1	2	10M
	b	Illustrate the one hot encoding on nominal features for a given data OR	L2	2	10M
0.04	Τ.	<u>-</u>	L1	2	10M
Q.04	a	Describe implementation of Logistic Regression using Scikit Learn	LI		TUIVI
	b	Illustrate the encoding class labels on supervised data.	L2	2	10M
		Module-3			
Q. 05	a	Apply Principle Component Analysis on unsupervised data for dimensionality reduction	L3	3	10M
	b	Apply the bag-of-words model to the IMDb movie review dataset to convert textual data into numerical features suitable for machine learning.	L3	3	10M
		OR			
Q. 06	a	Apply Linear Discriminant Analysis on supervised data for dimensionality reduction	L3	3	10M
	b	Apply a logistic regression model to the IMDb movie review dataset and classify reviews as positive or negative using the bag-of-words representation.	L3	3	10M
		Module-4			
Q. 07	a	Describe how to setup on SQL Lite database for data storage.	L1	4	10M
	b	Solve for modeling nonlinear relationships in Housing dataset	L3	4	10M
0.00	1	OR	T 1	1	1014
Q. 08	b	Describe turning the movie classifier into web application. Solve for estimating the coefficient of a regression model via scikit learn.	L1 L3	4	10M 10M

	•	Module-5			
Q. 09	a	Apply polynomial regression to extend a linear regression model	L3	5	10M
		into a curve and compare its performance against standard linear			
		regression using the Housing Dataset			
	b	Apply a simple linear regression model to the Housing Dataset to	L3	5	10M
		predict housing prices and evaluate its performance using			
		appropriate metrics.			
		OR			
Q. 10	a	Apply k-means clustering algorithm to group objects by similarity	L3	5	10M
		and analyse the resulting clusters.			
	b	Apply an artificial neural network to model complex functions and	L3	5	10M
		classify handwritten digits with high accuracy.			

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

Model Question Paper-2/2 with effect from 2021(CBCS Scheme)

7th Semester B.E. Degree Examination Subject Title: Machine Learning with Python

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Illustrate minimizing cost functions with gradient descent.	L2	1	10M
	b	Describe how to implement a perceptron learning algorithm on Iris dataset	L1	1	10M
		OR			
Q.02	a	Illustrate how to improve gradient descent through feature scaling	L2	1	10M
	b	Describe adaptive linear neurons (Adaline) with minimizing cost functions with gradient descent.	L1	1	10M
		Module-2			
Q. 03	a	Apply pre-processing techniques to clean a given dataset having missing values.	L3	2	10M
	b	Describe maximum margin classification with support vector machine with example.	L1	2	10M
		OR			
Q.04	a	Apply k-NN algorithm to classify multiclass -unsupervised data.	L3	2	10M
	b	Describe how to handle categorical data with example .	L1	2	10M
	1	Module-3			
Q. 05	a	Apply the bag-of-words model to the IMDb movie review dataset to convert textual data into numerical features suitable for machine learning.	L3	3	10M
	b	Explain confusion matrix, precision, recall, F1 score, ROC with example	L1	3	10M
		OR			
Q. 06	a	Apply a logistic regression model to the IMDb movie review dataset and classify reviews as positive or negative using the bag-of-words representation.	L3	3	10M
	b	Describe the process of k-fold cross-validation . Why it is preferred over a single train-test split ?	L1	3	10M
	<u> </u>	Module-4			
Q. 07	a	Describe the key components and workflow of developing a web application using flask.	L1	4	10M
	b	Apply regularization techniques such as ridge regression ,lasso regression to address overfitting in a regression model.	L3	4	10M

	1	OR			
Q. 08	a	Describe deploying the web application to public server.	L1	4	10M
	b	Apply RANSAC algorithm to fit a robust regression model on a dataset and discuss its ability to handle outliers and improve model performance.	L3	4	10M
		Module-5			
Q. 09	a	Apply polynomial regression to extend a linear regression model into a curve and compare its performance against standard linear regression using the Housing Dataset	L3	5	10M
	b	Apply a simple linear regression model to the Housing Dataset to predict housing prices and evaluate its performance using appropriate metrics.	L3	5	10M
		OR			
Q. 10	a	Apply k-means clustering algorithm to group objects by similarity and analyse the resulting clusters.	L3	5	10M
	b	Apply with different neural network architectures to improve performance on handwritten digit classification tasks.	L3	5	10M

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

Model Question Paper-1 with effect from 2021(CBCS Scheme)

USN		
-----	--	--

7th Semester B.E. Degree Examination **Machine Learning with Python**

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each MODULE.

COs *Bloom's Module -1 Marks Taxonomy Level Q.01 Explain the different types of learning. CO1 L2 8 Discuss the roadmap for building machine learning systems. L2 CO1 7 c Explain the biological neuron with a neat diagram. L2 CO1 5 OR O.02 a Explain the different types of learning. CO1 8 L2 Explain the Adaptive linear neurons and the convergence of learning. L2 CO1 7 Explain the biological neuron with a neat diagram. CO1 L2 5 **Module-2** Q. 03 Explain the concepts overfitting and underfitting problem in machine CO1 L2 8 How does Logistic Regression handle multi-class classification? L2 CO1 7 b What are L1 and L2 regularization, and when would you use them? L2 CO4 5 OR Q.04 What is the geometric interpretation of the "margin" in SVMs? L2 CO3 8 Demonstrate k- Nearest Neighbors with example. L2 CO4 7 Why are kernels used in SVMs? L2 CO₄ 5 Module-3 Discuss principal component analysis method. CO1 Q. 05 L2 8 Explain the inner workings of linear discriminant analysis. L2 CO1 7 c Interpret how to assess feature importance with random forests? L2 CO₁ 5 OR Q. 06 Explain partitioning a dataset into training and test dataset. L2 CO3 8 How to deal with missing data and categorical data? CO3 Discuss about bag of words CO4 L2 5 **Module-4** Q. 07 Develop a python code to create a new SQLite database inside the L3 CO₃ 10 movieclassifier directory and store two example movie reviews. Explain the mathematical formulation of a simple linear regression model L2 CO₃ 10 with a neat diagram. OR $Q. \overline{08}$ Describe the algorithmic steps involved in fitting a robust regression L2 CO₂ 10 model using RANSAC. What metrics are commonly used to evaluate the performance of linear L2 CO₂ 10 regression models? Discuss their significance. **Module-5** What is the k-means clustering algorithm, and how does it group objects Q. 09 L2 CO₂ 10 based on similarity? What is hierarchical clustering, and demonstrate the working with the L2 CO₂ 10 help of an example?

		OR			
Q. 10	a	Explain the working of multilayer neural network architecture.	L2	CO3	8
	b	Explain the process of backpropagation and how it updates weights during training.	L2	CO4	7
	c	What is the MNIST dataset, and why is it widely used in digit classification tasks?	L2	CO4	5

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.