USN Model Question Paper-I with effect from 2022

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Statistical Methods All branches Except CS & ME Engg.Allied branches-21MAT41

TIME: 03 Hours

Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Q.I	No.	Question	М	L	CO
		Module -1			
01	a	Define analytic function and derive C-R equations in Cartesian form.	06	L2	CO1
	b	Show that $f(z) = log z$ is analytic and hence obtain its derivative.	07	L2	CO1
	с	Evaluate $\int_{0}^{1+i} (x^2 - i y) dz$ along the curve $y = x^2$.	07	L3	CO1
		OR			
02		Construct an analytic function, whose imaginary part is $v = e^x (xSiny + yCosy)$	06	L2	CO1
	а	by the Milne-Thomson method			
	b	State and prove Cauchy's integral formula.	07	L2	CO1
	U				
	c	Evaluate $\int_{C} \frac{Sin\pi z^{2} + Cos\pi z^{2}}{(z-1)(z-2)} dz$, where $C: z = 3$.	07	L3	CO1
		Module-2			
03		Obtain the series solution of Bessel's differential equation	06	L2	CO2
	a	$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} + n^{2})y = 0$			
	b	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	07	L2	CO2
	с	Express $x^3 - 5x^2 + 6x + 1$ in terms of Legendre polynomial	07	L2	CO2
	•	OR			
4	a	Show that $J_{-n}(x) = (-1)^n J_n(x)$		L2	CO2
	a		07	L2	CO2
	b	Show that $P_4(\cos\theta) = \frac{1}{64} (35\cos 4\theta + 2\theta\cos \theta + 9).$	07	112	02
	c	Prove that $x^3 - 2x^2 - x - 3 = \frac{2}{5}P_3(x) + \frac{4}{3}P_2(x) - \frac{2}{5}P_1(x) - \frac{7}{3}P_0(x)$ Module-3	07	L2	CO2
		Module-3	1		
5		Find Karl Pearson's coefficient of correlation.	06	L2	CO3
		x: 1 2 3 4 5 6 7			
	a	y: 9 8 10 12 11 13 14			

10	0.0)7.	20	23

		Fit a straig	ht lin	e y = c	ax + b	o for the d	ata						07	L2	CO3
	b		<i>x</i> :		5	10	15		20	25					
	U		<i>y</i> :	1	16	19	23		26	30					
		Find the re	egress	ion line	es of	y on x an	d x on	y for t	the foll	owing d	ata		07	L2	CO3
			<i>x</i> :	1		2		3	4		5				
	с		y :	2		5		3	8	;	7				
							1	OR				J			
6		The partici	ipants	s in a co	ontes	t are ranke	ed by 1	two ju	dges as	follows	5.		06	L2	CO3
	а	<i>x</i> :	1	6	5	10	3	2	4	9	7	8			
		<i>y</i> :	6	4	9	8	1	2	3	10	5	7			
		Compute t Compute m					tion of	officia	ant r fr	om the i	nivon re	aression	07	L2	CO3
	b	lines $2x + 3$							JIII / II	oni uic ş		gression	07	1.2	
		Fit a secon	nd deg	gree pol	lynor	mial $y = c$	$ax^2 + b$	px + c f	for the	data.			07	L2	CO3
	с		$\frac{x:}{y:}$	1 10		2 12	3		4		5 19				
		,	,.	10		12		, Modul			19				
		A random v	variab	ole X ha	as the	following				on:			06	L2	CO4
	а		X	-3			-1	0	1	2	3				
			P(X)				3k	4 <i>k</i>	3 <i>k</i>	2 <i>k</i>	k				
	1	Find <i>k</i> . A Find the m), $P(X > of Binom$							07	L2	CO4
7	b										1 1. 1114-	<u> </u>	07	L2 L3	CO4
-		any blade	to be	defecti	ve. T	The blades	are s	upplie	d in a p	backets o	of 10. U	y of $\frac{1}{500}$ for Use Poisson	07		004
	c	distribution i) No d			e app	roximate	numb	er of p	ackets	containi	ng				
		ii) Two													
		iii)Thre	e def	ective i	n cor	nsignment	t of 10	000 pa	ackets.						
								OR							
	a	A random							$\int kx^2$	-3<	x < 3		06	L2	CO4
8		A fandoni	varia	ble X h	as de	ensity fund	ction:	f(x) =	= { 0	Other	wise'				

	b	The probability	-			-	fective is 0.1.	07	L2	CO4
		If 12 such pens			1	ionity that				
			-	ill be defectiv vill be defecti						
			vill be defec		ve					
	с	,			mination foll	ow the norr	nal distribution	07	L3	CO4
							s whose marks	07		04
		will be				inder student	s whose marks			
		i) Less t	han 65							
		i) More								
		,	veen 65 and	75						
			cen os una		Iodule-5					
9	a	The joint distri	bution of tw			Y is as follo	WS.	06		CO5
			Y	-4	2	7			L2	
				1	1	1				
			1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$				
							-			
			5	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$				
		Commente	41 f . 11		8	8]			
		-	the followin $\mathbf{E}(\mathbf{V})$	g.						
		$\begin{array}{c} \text{I) } E(X) \\ \text{ii) } E(XY) \end{array}$	and $E(Y)$							
	1	iii) σ_X		— — — — —			<u> </u>	07	1.0	COT
	b	Define i) Null h		Type-I & Ty	ype-II errors 1	11) Degrees (of freedom	07	L2	CO5
		iv) Level of Sig		<u> </u>	1 (1 61'6	1.4 6.11	• 1/	07	1.2	COF
	c				-		owing results are	07	L3	CO5
		D ()		$\cdot 10 v = 20$		100				
		obtained: Batte	ryA: $n_1 =$	$x_1 = 500$	0 Hrs. $\sigma_1^2 =$	= 100				
		obtained: Batte Batte	$ryA: n_1 = ryB: n_2 = $	$x_1 = 500$ = 10 $\bar{x}_2 = 50$	$\begin{array}{l} 0 \ Hrs. \sigma_1 = \\ 6 \ Hrs. \sigma_2^2 = \end{array}$	=100 =121				
		Batte	eryB: $n_2 =$ nt's t and t	= 10 $\bar{x}_2 = 50$ est whether t	6 Hrs. σ_2^2 =	=121	rence in the two			
		Compute Stude	eryB: $n_2 =$ nt's t and t	= 10 $\bar{x}_2 = 50$ est whether t	6 Hrs. σ_2^2 =	=121	rence in the two			
10	a	Compute Stude	eryB: $n_2 =$ nt's t and t gnificance le	$= 10 \overline{x}_2 = 50$ est whether t vel.	$6 Hrs. \sigma_2^2 =$ here is a sign	=121	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d	$= 10 \overline{x}_2 = 50$ est whether t vel.	$6 Hrs. \sigma_2^2 =$ here is a sign	=121 nificant diffe	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance	= 10 $\bar{x}_2 = 50$ est whether t vel.	$6 Hrs. \sigma_2^2 =$ here is a sign \overline{OR} e variables X =	=121 nificant diffe	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance	= 10 $\bar{x}_2 = 50$ est whether t vel. listributions e between the istribution is	$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X = given by:	=121 nificant diffe and <i>Y</i> ,	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability di	= 10 $\bar{x}_2 = 50$ est whether t vel.	$6 Hrs. \sigma_2^2 =$ here is a sign \overline{OR} e variables X =	=121 nificant diffe	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability d	$= 10 \overline{x}_2 = 50$ est whether t vel. distributions e between the istribution is 3	$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X = given by:	= 121 nificant diffe and <i>Y</i> , 5 1	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability d	= 10 $\bar{x}_2 = 50$ est whether t vel. distributions e between the istribution is 3	$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X = given by: 4	=121 nificant diffe and <i>Y</i> , 5	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability d X 2	$= 10 \overline{x}_2 = 50$ est whether t vel. distributions e between the istribution is 3	$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X a given by: 4 <u>1</u>	= 121 nificant diffe and <i>Y</i> , 5 1	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability d	$ 10 \overline{x}_2 = 50 $ est whether t vel. listributions e between the istribution is 3 $ \frac{1}{6} $	$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X = given by: 4 $\frac{1}{6}$	= 121 nificant diffe and <i>Y</i> , 5 $\frac{1}{6}$	rence in the two	06	L2	CO5
10	a	Compute Stude means at 5% sig	eryB: $n_2 =$ nt's t and t gnificance le) Marginal d) Covariance probability d X 2		$6 Hrs. \sigma_2^2 =$ here is a sign OR e variables X a given by: 4 $\frac{1}{6}$ 1	= 121 inificant diffe and Y , 5 $\frac{1}{6}$ 1	rence in the two	06	L2	CO5

		the universe is 66	5 inches at 5% sig	,	ypothesis that the			
c	In experiments of	07	L3	COS				
	Round and Yellow	Wrinkled and Yellow	Round and Green	Wrinkled and Green	Total			
	315	101	108	32	556			
	Theory predicts	that the frequen	cies should be i	n proportions9:3	: 3: 1. Examine			
	the corresponde	nce between the	ory and experime	ent				

	Lower-order thinking skills									
Bloom's Taxonom y Levels	Remembering (knowledge):L ₁	Understanding (Comprehension): L ₂	Applying (Application): L_3							
y Levels		Higher-order thinking skills								
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆							

USN

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Statistical Methods All branches Except CS & ME Engg. Allied branches-21MAT41

TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q .I	No.	Question	Μ	L	CO
		Module -1			
01	a	Define Analytic function and hence derive C-R equations in Polar form.	06	L2	CO1
	b	Show that $w = f(z) = z + e^{z}$ is analytic and hence find its derivative.	07	L3	CO1
	с	Evaluate $\int_{(0,3)}^{(2,4)} (2y+x^2) dx + (3y-x) dy$ along with the parabola $x = 2t$, $y = t^2 + 3$.	07	L2	CO1
		OR			
02	a	Find analytic function $f(z) = u + iv$ where $u - v = (x - y)(x^2 + 4xy + y^2)$ by the Milne-Thomson method.	06	L3	CO1
	b	State and prove Cauchy's integral formula.	07	L3	CO1
	c	Evaluate $\int_{C} \frac{e^{2z}}{(z+1)(z+2)} dz$, where C is a circle $ z = 3$.	07	L2	CO1
		Module-2			
03	a	Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	06	L2	CO2
	b	If α and β are two distinct roots of $J_n(x) = 0$, then prove that	07	L2	CO2
		$\int_{0}^{1} x J_n(\alpha x) J_n(\beta x) dx = 0.$			
	c	Show that $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$	07	L2	CO2
		OR			
4	a	Show that $J_{-\frac{1}{2}}(x) = J_{\frac{1}{2}}(x) cotx$	06	L2	CO2
	b	Find the series solution of the Legendre's equation $(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$,	07	L2	CO2
		leading to Legendre polynomial of order <i>n</i> .			
	с	Express $4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomials	07	L2	CO2
		Module-3	I	1	1

5	a				-		-		heigh ation.		fath	er(x)) and	l son	s(y)). Cal	cula	te th	e Ka	rl	06	L2	CO3
		-	x :	65		66		67	68		68		69		70)	72						
			y :	67		68	(65	68	3	72		72		69)	71						
	b	F	it a s	straiş	ght li	ine y	=ax	+ b	for the	e dat	a										07	L2	CO3
					x	c:	12		15		21		25	5									
					y	v:	50)	70		100		12	0									
	c	U	sing	g the	met	hod o	f leas	st squ	ıare, f	ït a c	curve	y =	ax^{b}	for t	he f	follow	ving	da	ta		07	L2	CO3
			<i>x</i> :			1		2		3			4		4	5		6					
			y :		2.	98	2	4.26		5.21		e	5.1		6	.8		7.5					
	[·			Ol											
6	a	Т	he s	core	s for	9 stu	dents	s in F	Physic	s (x)	and	Matl	nema	atics	(y)	are as	s fol	low	5		06	L2	CO3
			x:		35		23	2	17	17	,	10		43		9		6	28				
			y :	,	30)	33	4	45	23		8		49		12		4	31				
			-						corre														~~~
	b		-						the constraints $9y = 1$		ation	i coe	ffici	ent <i>r</i>	• fro	m the	e giv	en r	egres	sion	07	L2	CO3
	с				•				y = 1 ial y:		$\frac{1}{2} + b$	r + c	for	the d	ata						07	L2	CO3
		1	$\begin{bmatrix} x \\ x \end{bmatrix}$			$\frac{1}{20}$		60			$\frac{10}{00}$		140		_	180		22	0				
				:	0).18		0.37	,	0.	35		0.78	8	(0.56		0.7	'5				
		1 T										Modu											
7	а	A	rand		varia		$\frac{1}{1}$	1	follow							6				7	06	L2	CO4
				$\frac{X}{P(X)}$)	0	$\frac{1}{k}$	2		$\frac{3}{2k}$	_	$\frac{4}{8k}$	$\frac{5}{k^2}$			$\frac{6}{k^2}$	7	$\frac{7}{k^2}$	+k				
			Fin	d k.	Als	o find	$\overline{P(Z)}$	<i>K</i> < 6	(b), P(z)	$X \ge$	6), <i>I</i>	P(3 <	-							_			
	b	De	rive	the 1	meai	n and	varia	nce	of Poi	sson	dist	ributi	ion.								07	L2	CO4
	с	a (prol i) N ii) A	babil o lin All lin	ity () e is nes a	-	10 li sy	nes a	nes bu are cho	-										th	07	L3	CO4

						OR						
8	a	The diameter of with p.d.f $f(x)$ Find the value	$z) = \begin{cases} kx(x) \\ 0, \end{cases}$	1 — x), 0 <u><</u> else	≤ x < 1 where					06	L2	CO4
	b	The number of distribution wit of drivers with i) No acciden ii) More than	th mean 3 nt in a yea	. Out of 10 r	000 taxi d			•		07	L2	CO4
	с	If the life tin distributed non firm purchase (i) More that (ii) Less that (iii) Between	rmally wit 2500 bulb n 2100 ho n 1950 ho	th an avera s, find the urs urs	ge life of number o	f 2000 h	ours ar	nd S.D.60 h	nours. If a	07	L2	CO4
		I			Modu	le-5						
9	а	The joint dis	stribution (of two rand	lom varia	bles X a	nd Y is	as follows.		06	L2	CO5
			X	1	3	6						
			1	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{18}$						
			3	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{12}$						
			6	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{36}$						
		_	te the foll	-								
		-		butions of X		1 2						
				tochasticall								
	b	A set of five sir	- 1			and the	-			07	L2	CO5
		No. of heads	0	1	2		3	4	5			
		Frequency	6	27	72		12	71	32			
		Test the hypoth level	nesis that	the data fo	llows a b	inomial	distribi	ution at 5%	significance			
	с	A certain stimu change in the b that the stimul	blood pres	sure 5, 2, 8	8, -1, 3, 0), 6, -2,	1, 5, 0,	4. Can it l	be concluded		L3	C05

) a	Det	ermine (i) Ma	arginal distrib	OR utions (ii) Cor	relation coef	ficient bety	veen the	06	L2	CO5
		variables X and Y, from the joint probability distribution given by:								
		Y	-2	-1	4	5				
		1	0.1	0.2	0	0.3				
		2	0.2	0.1	0.1	0				
b	Doe		hese differ sig	following valu nificantly from				07	L3	CO5
С	be 9 were	:3:3:1. In an	experiment am 87 and 118.	n of beans in th hong 1600 bea The goodness	ns, the numb	er in the F	our groups	07	L3	CO5

	Low	er-order thinking skills							
Bloom's Taxonom y Levels	Remembering (knowledge):L ₁	Understanding (Comprehension): L ₂	Applying (Application): L_3						
y hevels	Higher-order thinking skills								
	Analyzing (Analysis):L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): L ₆						