Note: Answer any FIVE full questions, choosing at least ONE question from each module.

	b	The probability that a pen manufactured by a company will be defective is 0.1 . If 12 such pens are selected at random, find the probability that i) Exactly two pens will be defective ii) At most two pens will be defective iii) None will be defective				07	L2	CO4
	c	The marks of 1000 students in an examination follow the normal distribution with mean 70 and standard deviation 5 . Find the number students whose marks will be i) Less than 65 i) More than 75 iii) Between 65 and 75 .				07	L3	CO4
Module-5								
9	a	The joint distribution of two Compute the followin i) $E(X)$ and $E(Y)$ ii) $E(X Y)$ iii) $\sigma_{X} \& \sigma_{Y}$	$\begin{gathered} \hline \text { ndom } \\ \hline-4 \\ \hline \frac{1}{8} \\ \hline \frac{1}{4} \\ \hline \end{gathered}$	X 2 $\frac{1}{4}$ $\frac{1}{8}$	is as follows.	06	L2	CO5
	b	Define i) Null hypothesis ii) Type-I \& Type-II errors iii) Degrees of freedom iv) Level of Significance.				07	L2	$\mathrm{CO5}$
	c	Two types of batteries are tested for their length of life and the following results are obtained: Battery A: $\quad n_{1}=10 \quad \bar{x}_{1}=500 \mathrm{Hrs} . \quad \sigma_{1}{ }^{2}=100$ Battery B: $\quad n_{2}=10 \quad \bar{x}_{2}=506 \mathrm{Hrs} . \quad \sigma_{2}{ }^{2}=121$ Compute Student's t and test whether there is a significant difference in the two means at 5\% significance level.				07	L3	$\mathrm{CO5}$
10 a		Determine (i) Marginal distributions OR						CO5
		Determine (i) Marginal (ii) Covarianc If the joint probability	wutio 3 3 $\frac{1}{6}$ $\frac{1}{12}$ $\frac{1}{12}$	ables 4 $\frac{1}{6}$ $\frac{1}{12}$ $\frac{1}{12}$	Y,	06	L2	

Model Question Paper-II with effect from 2022

USN

Fourth Semester B.E Degree Examination Complex Analysis, Probability \& Statistical Methods All branches Except CS \& ME Engg. Allied branches-21MAT41
TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Q.No.		Question	M	L	CO
Module -1					
01	a	Define Analytic function and hence derive C-R equations in Polar form.	06	L2	CO1
	b	Show that $w=f(z)=z+e^{z}$ is analytic and hence find its derivative.	07	L3	CO1
	c	Evaluate $\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 y-x) d y$ along with the parabola $x=2 t, y=t^{2}+3$.	07	L2	CO1
OR					
02	a	Find analytic function $f(z)=u+i v$ where $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ by the Milne-Thomson method.	06	L3	CO1
	b	State and prove Cauchy's integral formula.	07	L3	CO1
	c	Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)(z+2)} d z$, where C is a circle $\|z\|=3$.	07	L2	CO1
Module-2					
03	a	Show that $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$	06	L2	CO2
	b	If α and β are two distinct roots of $J_{n}(x)=0$, then prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=0 .$	07	L2	CO2
	c	Show that $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$	07	L2	CO2
OR					
4	a	Show that $J_{-\frac{1}{2}}(x)=J_{\frac{1}{2}}(x) \cot x$	06	L2	CO 2
	b	Find the series solution of the Legendre's equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$, leading to Legendre polynomial of order n.	07	L2	CO 2
	c	Express $4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre polynomials	07	L2	CO2
		Module-3			

OR												
8	a	The diameter of a electric cable is assumed to be a continuous random variable with p.d.f $f(x)= \begin{cases}k x(1-x), & 0 \leq x<1 \\ 0, & \text { else where }\end{cases}$ Find the value of k and also obtain the mean and variance of the variable							06	L2	CO4	
	b	The number of accidents in a year to taxi drivers in a city follows a Poisson distribution with mean 3 . Out of 1000 taxi drivers find approximately the number of drivers with i) No accident in a year ii) More than three accidents in a year.							07	L2	CO 4	
	c	If the life time of a certain types electric bulbs of a particular brand was distributed normally with an average life of 2000 hours and S.D. 60 hours. If a firm purchase 2500 bulbs, find the number of bulbs that are likely to last for (i) More than 2100 hours (ii) Less than 1950 hours (iii) Between 1900 and 2100 hours.							07	L2	CO 4	
Module-5												
9	a	The joint distribution of two random variables X and Y is as follows.								L2	$\mathrm{CO5}$	
		Y 1 3 6 1 $\frac{1}{9}$ $\frac{1}{6}$ $\frac{1}{18}$ 3 $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{12}$ 6 $\frac{1}{18}$ $\frac{1}{12}$ $\frac{1}{36}$ Compute the following. i) Marginal distributions of X and Y ii) Are X and Y stochastically independent?							06			
	b	A set of five similar coins is tossed 320 times and the result is								07	L2	$\mathrm{CO5}$
		No. of heads	0	1		3	4	5				
		Frequency	6	27	72	112	71	32				
		Test the hypothesis that the data follows a binomial distribution at 5% significance level										
	c	A certain stimulus administered to each of the 12 patients resulted in the following change in the blood pressure $5,2,8,-1,3,0,6,-2,1,5,0,4$. Can it be concluded that the stimulus will increase the blood pressure? (Note : $t_{0.05}$ for 11 d.f. is 2.201).							07	L3	$\mathrm{CO5}$	

