

## **TIME: 03 Hours**

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

| Q.I | No. | Question                                                                                                                                                                                                                                                                                                                                                                                                                         | Μ  | L  | CO  |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|
| Ŭ   |     | Module -1                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |     |
| 01  | a   | Define tautology. Determine whether the following compound statement is a tautology or not. $\{(p \lor q) \rightarrow r\} \leftrightarrow \{\neg r \rightarrow \neg (p \lor q)\}$                                                                                                                                                                                                                                                | 06 | L2 | CO1 |
|     | b   | Using the laws of logic, prove the following logical equivalence $[(\neg p \lor \neg q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land \neg q.$                                                                                                                                                                                                                                                                             | 07 | L3 | CO1 |
|     | с   | Give direct proof and proof by contradiction for the statement "If $n$ is an odd integer then $n+9$ is an even integer"                                                                                                                                                                                                                                                                                                          | 07 | L2 | CO1 |
|     |     | OR                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |     |
| 02  | a   | Test the validity of the arguments using rules of inference.<br>$(\neg p \lor q) \rightarrow r$<br>$r \rightarrow (s \lor t)$<br>$\neg s \land \neg u$<br>$\neg u \rightarrow \neg t$                                                                                                                                                                                                                                            | 06 | L3 | CO1 |
|     |     | $\frac{\neg u \rightarrow \neg u}{\therefore p}$                                                                                                                                                                                                                                                                                                                                                                                 |    |    |     |
|     | b   | Find whether the following arguments are valid or not for which the universe is the set of all triangles. In triangle XYZ, there is no pair of angles of equal measure. If the triangle has two sides of equal length, then it is isosceles. If the triangle is isosceles, then it has two angles of equal measure. Therefore Triangle XYZ has no two sides of equal length.                                                     | 07 | L3 | CO1 |
|     | с   | If $p(x): x \ge 0, q(x): x^2 \ge 0, r(x): x^2 - 3x - 4 = 0, s(x): x^2 - 3 > 0$<br>Determine the truth or falsity of the following statement:<br>i) $\exists x [p(x) \land q(x)]$ ii) $\forall x [p(x) \rightarrow q(x)]$ iii) $\forall x [q(x) \rightarrow s(x)]$<br>iv) $\forall x [r(x) \land s(x)]$ v) $\exists x [p(x) \land r(x)]$ vi) $\forall x [r(x) \rightarrow p(x)]$<br>vii) $\exists x [r(x) \rightarrow \neg p(x)]$ | 07 | L2 | CO1 |
|     | 1   | Module-2                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | I  |     |
| 03  | а   | Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$ ,<br>If $(g \circ f)(x) = 9x^2 - 9x + 3$ determine a and b.                                                                                                                                                                                                                                                                             | 06 | L2 | CO2 |

|   | b | Let $A = \{1, 2, 3, 4, 6\}$                  | and R b                                                                                                                                                                              | e a re            | elation         | on A c    | lefined           | by al    | <i>b</i> if an       | d only  | if " a | is a    | 07 | L2      | CO2 |
|---|---|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-----------|-------------------|----------|----------------------|---------|--------|---------|----|---------|-----|
|   |   | multiple of b". W                            | rite dow                                                                                                                                                                             | n the             | relatio         | on R, re  | elation           | matrix   | M(R                  | ) and   | draw i | ts      |    |         |     |
|   |   | digraph.                                     |                                                                                                                                                                                      |                   |                 |           |                   |          |                      |         |        |         |    |         |     |
|   | c | Prove that in every g                        | raph the r                                                                                                                                                                           | numbe             | er of ve        | ertices o | f odd d           | egree i  | s even.              |         |        |         | 07 | L2      | CO2 |
|   |   |                                              |                                                                                                                                                                                      |                   |                 |           | OR                |          |                      |         |        |         |    |         |     |
| 1 | a | The digraph of a re                          | lation R                                                                                                                                                                             | defin             | ed on           | the set   | $A = \{1$         | ,2,3,4   | } is sho             | wn be   | low. V | Verify  | 06 | L2      | CO2 |
|   |   | that $(A, R)$ is a pos                       | set and co                                                                                                                                                                           | onstru            | ict the         | corres    | pondin            | g Has    | se diag              | ram.    |        |         |    |         |     |
|   |   |                                              | 0                                                                                                                                                                                    | -                 | )               | -         | L                 | 0        | 0                    |         |        |         |    |         |     |
|   |   |                                              | <                                                                                                                                                                                    | 2)~               | /               |           |                   |          |                      |         |        |         |    |         |     |
|   |   | C3                                           |                                                                                                                                                                                      | 4                 | )               |           |                   |          |                      |         |        |         |    |         |     |
|   | b | Let $A = B = C = R$ ,                        | and $f: A$                                                                                                                                                                           | $A \rightarrow l$ | B and           | l g : B   | $\rightarrow C$ l | be defin | ned by               |         |        |         | 07 | L2      | CO2 |
|   |   | f(a) = 2a + 1, g(b)                          | $=\frac{1}{b}$ , $\forall a$                                                                                                                                                         | $a \in A$         | $\forall h \in$ | В.        |                   |          |                      |         |        |         |    |         |     |
|   |   |                                              | -                                                                                                                                                                                    |                   |                 |           |                   |          | 1                    |         |        |         |    |         |     |
|   |   |                                              | Compute $g \circ f$ and show that $g \circ f$ is invertible. What is $(g \circ f)^{-1}$ ?<br>Define Graph isomorphism. Determine whether the following graphs are isomorphic or not. |                   |                 |           |                   |          |                      |         |        |         |    | ~ ~ ~ ~ |     |
|   | с | Define Graph Isolitor                        |                                                                                                                                                                                      | cum               |                 |           |                   | wing gi  | apris a              | C 13011 | orpine | or not. | 07 | L2      | CO2 |
|   |   |                                              | 4                                                                                                                                                                                    | Ma Ma             | u,              | N N       | Vi Vi Vi          |          |                      |         |        |         |    |         |     |
|   |   |                                              |                                                                                                                                                                                      |                   | Mo              | dule-3    |                   |          |                      |         |        |         |    |         |     |
| 5 | a | Ten competitors in                           | n a beau                                                                                                                                                                             | ity co            |                 |           | nked b            | by two   | judge                | es A a  | and B  | in the  | 06 | L2      | CO3 |
|   |   | following order:                             |                                                                                                                                                                                      |                   |                 |           |                   |          |                      |         | 1      |         |    |         |     |
|   |   | ID No. of competitors                        | 1                                                                                                                                                                                    | 2                 | 3               | 4         | 5                 | 6        | 7                    | 8       | 9      | 10      |    |         |     |
|   |   | Judge A                                      | 1                                                                                                                                                                                    | 6                 | 5               | 10        | 3                 | 2        | 4                    | 9       | 7      | 8       |    |         |     |
|   |   | Judge B                                      | 6                                                                                                                                                                                    | 4                 | 9               | 8         | 1                 | 2        | 3                    | 10      | 5      | 7       |    |         |     |
|   |   | Calculate the rank of                        |                                                                                                                                                                                      |                   |                 |           |                   |          |                      |         |        |         |    |         |     |
|   | b | In a partially destro<br>are available as 42 | -                                                                                                                                                                                    |                   | -               |           |                   | -        |                      | -       |        |         |    | L2      | CO3 |
|   |   | the coefficient of co                        | -                                                                                                                                                                                    |                   |                 |           | -                 | - 107    | . Calc               |         | i unu  | y anu   |    |         |     |
|   | с | An experiment gav                            |                                                                                                                                                                                      |                   |                 |           |                   |          |                      |         |        |         | 07 | L2      | CO3 |
|   |   | v(ft/min)                                    |                                                                                                                                                                                      | 400               | 500             |           | )                 |          |                      |         |        |         |    |         |     |
|   |   | t(min.)                                      | 61                                                                                                                                                                                   | 26                | 7               | 26        |                   |          |                      |         |        |         |    |         |     |
|   |   | It is known that v a                         | nd t are o                                                                                                                                                                           | conne             | ected b         | by the r  | elation           | v = a    | t <sup>b</sup> . Fir | nd the  | best p | ossible |    |         |     |
|   |   | values of <i>a</i> and <i>b</i> .            |                                                                                                                                                                                      |                   |                 |           |                   |          |                      |         |        |         |    |         |     |

|   |   |              |                                     |                            |                                                   | OR             |                   |                |           |        |    |       |     |  |  |  |
|---|---|--------------|-------------------------------------|----------------------------|---------------------------------------------------|----------------|-------------------|----------------|-----------|--------|----|-------|-----|--|--|--|
| 6 | a | The follow   | ing table gi                        | ves the heigl              | nts of fathe                                      | rs(x) and sc   | ons (y):          |                |           |        | 06 | L2    | CO3 |  |  |  |
|   |   | X            |                                     | 66 67                      | 67                                                | 68             | 69                | 70             |           |        |    |       |     |  |  |  |
|   |   | у            |                                     | 68 65                      | 68                                                | 72             | 72                | 69             | -         |        |    |       |     |  |  |  |
|   |   |              | -                                   | ssion and Ca               |                                                   | coefficient    | of corre          | elation        | •         |        |    |       |     |  |  |  |
|   | b | Fit a parabo | ola $y = ax^2$                      | +bx+c for                  | the data                                          |                |                   |                |           |        | 07 | L2    | CO3 |  |  |  |
|   |   | X            | 1.0                                 | 1.5                        | 2.0                                               | 2.5            | 3.0               |                | 3.5       | 4.0    |    |       |     |  |  |  |
|   |   | У            | 1.1                                 | 1.3                        | 1.6                                               | 2.0            | 2.7               |                | 3.4       | 4.1    |    |       | CO3 |  |  |  |
|   | с | With usual   | l notation,                         | compute m                  | eans $\bar{x}, \bar{y}$ a                         | nd correlat    | tion coe          | efficier       | nt r fron | n the  | 07 | 07 L2 |     |  |  |  |
|   |   | following l  | ines of regr                        | ression: $2x +$            | 3y + 1 = 0                                        | and $x+6$      | y - 4 = 0         | Э.             |           |        |    |       |     |  |  |  |
|   |   | Module-4     |                                     |                            |                                                   |                |                   |                |           |        | 1  |       | 1   |  |  |  |
| 7 | a | A random     | variable X l                        | has the follow             | wing probal                                       | oility functi  | on:               |                |           |        | 06 | L2    | CO4 |  |  |  |
|   |   | <i>x</i>     | -2                                  | -1                         | 0                                                 | 1              |                   | 2              | 3         |        |    |       |     |  |  |  |
|   |   | P(x)         | 0.1                                 | k                          | 0.2                                               | 2k             | (                 | ).3            | k         |        |    |       |     |  |  |  |
|   |   | Find the va  | lue of k an                         | d calculate t              | he mean an                                        | d variance     |                   |                |           |        |    |       |     |  |  |  |
|   | b | Find the me  | ean and sta                         | ndard deviat               | ion of the E                                      | Binomial dis   | stributio         | n              |           |        | 07 | L2    | CO4 |  |  |  |
|   | с | In a test or | 1 2000 elec                         | tric bulbs, it             | was found                                         | that the li    | fe of a           | particu        | ılar make | was    | 07 | L3    | CO4 |  |  |  |
|   |   |              |                                     | ith an avera               |                                                   |                |                   |                |           |        | 0. | 20    |     |  |  |  |
|   |   |              |                                     | mber of bulk               |                                                   |                |                   |                |           |        |    |       |     |  |  |  |
|   |   |              | re than 215                         |                            | •                                                 |                |                   |                |           |        |    |       |     |  |  |  |
|   |   | ii. Les      | s than 1950                         | ) hours                    |                                                   |                |                   |                |           |        |    |       |     |  |  |  |
|   |   | iii. Bet     | ween 1920                           | and 2160 hc                | ours                                              |                |                   |                |           |        |    |       |     |  |  |  |
|   |   |              |                                     |                            |                                                   | OR             |                   |                |           |        |    |       |     |  |  |  |
| 8 | 9 |              |                                     |                            |                                                   |                |                   |                |           |        | 06 | L2    | CO4 |  |  |  |
| 0 | а | Find the co  | onstant $k$ such                    | ch that $f(x)$             | $=\begin{cases} kx^2 & 0 \\ kx^2 & 0 \end{cases}$ | < x < 3 is a   | a p.d.f.          |                |           |        | 00 | L     | 04  |  |  |  |
|   |   |              |                                     | 5 ( )                      | $\begin{bmatrix} 0 & ot \end{bmatrix}$            | herwise        | 1                 |                |           |        |    |       |     |  |  |  |
|   |   | Also, comp   | pute i) $P(1 \cdot$                 | (x < 2) ii)                | $P(x \le 1)$ is                                   | ii) $P(x > 1)$ |                   |                |           |        |    |       |     |  |  |  |
|   | b | 2% of fuse   | es manufact                         | ured by a fin              | rm are four                                       | nd to be def   | fective.          | Find t         | he proba  | oility | 07 | L2    | CO4 |  |  |  |
|   |   |              | •                                   | g 200 fuses                |                                                   | • /            | ctive fu          | ises (i        | i) 3 or   | more   |    |       |     |  |  |  |
|   |   |              | ~ /                                 | least one det              |                                                   |                |                   |                |           |        |    |       |     |  |  |  |
|   | c |              |                                     | on 31% of th               |                                                   |                | nd 8% o           | of the         | items are | over   | 07 | L2    | CO4 |  |  |  |
|   |   | 64. Find the | e mean and                          | S.D of the c               | listribution.                                     |                |                   |                |           |        |    |       |     |  |  |  |
|   |   | Module-5     |                                     |                            |                                                   |                |                   |                |           |        | 1  |       |     |  |  |  |
| 9 | a | The joint d  | istribution                         | of two rando               |                                                   |                | s as foll         | ows            |           |        | 06 |       | CO5 |  |  |  |
|   |   |              |                                     | Y                          |                                                   |                |                   |                |           |        |    | L2    |     |  |  |  |
|   |   |              | X                                   |                            |                                                   | 7              |                   |                |           |        |    |       |     |  |  |  |
|   |   |              |                                     | 1 1/8                      |                                                   | 1/8            |                   |                |           |        |    |       |     |  |  |  |
|   |   |              |                                     | 5 1/4                      | 1/8                                               | 1/8            |                   |                |           |        |    |       |     |  |  |  |
|   |   | <b>C</b>     | f - 11 ·                            |                            |                                                   |                |                   | 1              |           |        |    |       |     |  |  |  |
|   |   |              |                                     | g. (i) $E(X)$ and $(V, V)$ | ha E(Y) (1)                                       | 1) E(XY) (1)   | 111) $\sigma_X$ a | and $\sigma_Y$ |           |        |    |       |     |  |  |  |
|   |   | (iv) COV(2   | $\mathbf{A}, \mathbf{I}$ (V) $\rho$ | (A, Y)                     |                                                   |                |                   |                |           |        |    |       |     |  |  |  |

|   | b | A coin wa                                                                                             | s tossec                                                                            | 1 400 time   | s and hea   | d turned u  | p 216 tim   | es. Test t  | he hypot  | hesis that | 07 | L2 | CO5 |
|---|---|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-----------|------------|----|----|-----|
|   |   | the coin is                                                                                           | unbiase                                                                             | ed at 5% l   | evel of sig | nificance.  |             |             |           |            |    |    |     |
|   | c | A certain                                                                                             | stimulu                                                                             | s administ   | tered to ea | ach of the  | 12 patien   | ts resulte  | d in the  | following  | 07 | L3 | CO5 |
|   |   | change in                                                                                             | change in blood pressure 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, and 4. Can it be conclu |              |             |             |             |             |           |            |    |    |     |
|   |   | that the sti                                                                                          | that the stimulus will increase the blood pressure? ( $t_{.05}$ for 11 d.f = 2.201) |              |             |             |             |             |           |            |    |    |     |
|   |   |                                                                                                       |                                                                                     |              |             | OR          |             |             |           |            |    |    |     |
| 0 | a | Explain th                                                                                            | e terms                                                                             | : (i) Null h | nypothesis  | (ii) Cont   | fidence in  | tervals (ii | i) Type-l | and        | 06 | L2 | CO5 |
|   |   | Type-II errors.<br>The mean life of 100 fluorescent tube lights manufactured by a company is found to |                                                                                     |              |             |             |             |             |           |            |    |    |     |
|   | b |                                                                                                       |                                                                                     |              |             |             |             |             |           |            | 07 | L3 | CO5 |
|   |   | be 1570 h                                                                                             | rs with                                                                             | a standard   | l deviation | n of 120 h  | rs. Test th | ne hypoth   | esis that | the mean   |    |    |     |
|   |   | lifetime o                                                                                            | f the 1                                                                             | ights pro    | duced by    | the comp    | pany is 1   | 1600 hrs    | at 0.01   | level of   |    |    |     |
|   |   | significant                                                                                           | ce.                                                                                 |              |             |             |             |             |           |            |    |    |     |
|   | с | A die is t                                                                                            |                                                                                     |              |             | number a    | ppearing    | on the fa   | ace(x) fo | llows the  | 07 | L3 | COS |
|   |   | following                                                                                             | frequen                                                                             | cy distrib   | ution.      |             |             | •           |           | -          |    |    |     |
|   |   |                                                                                                       | Х                                                                                   | 1            | 2           | 3           | 4           | 5           | 6         |            |    |    |     |
|   |   |                                                                                                       | У                                                                                   | 40           | 32          | 28          | 58          | 54          | 60        |            |    |    |     |
|   |   | Calculate the value of $\chi^2$ .                                                                     |                                                                                     |              |             |             |             |             |           |            |    |    |     |
|   | I |                                                                                                       |                                                                                     |              |             |             |             |             |           |            |    | 1  | 1   |
|   |   |                                                                                                       |                                                                                     |              | Low         | er-order th | ninking sk  | ills        |           |            |    |    |     |
|   |   | Dloom's                                                                                               | . –                                                                                 | Domomh       | oning       | II.         | ndonatan di | na          |           | Innluing   |    |    |     |

|          | Low                                  | ver-order thinking skills              |                                      |
|----------|--------------------------------------|----------------------------------------|--------------------------------------|
| Bloom's  | Remembering                          | Understanding                          | Applying                             |
| Taxonom  | (knowledge): L <sub>1</sub>          | (Comprehension): L <sub>2</sub>        | (Application): $L_3$                 |
| y Levels |                                      |                                        |                                      |
| 5        |                                      | Higher-order thinking skills           |                                      |
|          | Analyzing (Analysis): L <sub>4</sub> | Valuating (Evaluation): L <sub>5</sub> | Creating (Synthesis): L <sub>6</sub> |

|     | Model Question Paper-II with effect from 2022                    |  |  |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| USN |                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|     |                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|     | Fourth Semester B.E Degree Examination                           |  |  |  |  |  |  |  |  |  |  |  |
|     | Mathematical Foundations for Computing, Probability & Statistics |  |  |  |  |  |  |  |  |  |  |  |
|     | (Computer Science & Allied Engg. branches)-21MATCS41             |  |  |  |  |  |  |  |  |  |  |  |

## TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

| Q. | No. Question                               |                                                                                                                                                                                                                                                                                                                                                                    |    |    |     |  |  |  |  |  |  |
|----|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|--|--|--|--|--|--|
|    |                                            |                                                                                                                                                                                                                                                                                                                                                                    |    |    |     |  |  |  |  |  |  |
| 1  | a                                          | Define tautology. Show that $\{(p \lor q) \land (p \to r) \land (q \to r)\} \to r$ is a tautology by constructing the truth table.                                                                                                                                                                                                                                 | 06 | L2 | CO1 |  |  |  |  |  |  |
|    | b                                          | Prove the following using the laws of logic $[\neg p \land (\neg q \land r)] \lor [(q \land r) \lor (p \land r)] \Leftrightarrow r.$                                                                                                                                                                                                                               | 07 | L3 | CO1 |  |  |  |  |  |  |
|    | c                                          |                                                                                                                                                                                                                                                                                                                                                                    |    |    |     |  |  |  |  |  |  |
|    |                                            | OR                                                                                                                                                                                                                                                                                                                                                                 |    |    |     |  |  |  |  |  |  |
| 2  | a Define i) open statement ii) Quantifiers |                                                                                                                                                                                                                                                                                                                                                                    |    |    |     |  |  |  |  |  |  |
|    | b                                          | <ul><li>Write the following argument in symbolic form and then establish the validity:</li><li>If A gets the Supervisor's position and works hard, then he will get a raise.</li><li>If he gets a raise, then he will buy a car.</li><li>He has not purchased a car.</li><li>Therefore he did not get the Supervisor's position or he did not work hard.</li></ul> | 07 | L3 | CO1 |  |  |  |  |  |  |
|    | с                                          | For the following statements, the universe comprises all non-zero integers.<br>Determine the truth value of each statement.<br>a) $\exists x \exists y [xy = 1]$ b) $\exists x \forall y [xy = 1]$ c) $\forall x \exists y [xy = 1]$<br>d) $\exists x \exists y [(2x + y = 5) \land (x - 3y = -8)]$ e) $\exists x \exists y [(3x - y = 7) \land (2x + 4y = 3)]$    | 07 | L2 | CO1 |  |  |  |  |  |  |
|    |                                            | Module-2                                                                                                                                                                                                                                                                                                                                                           |    |    |     |  |  |  |  |  |  |
| 3  | a                                          | <ul> <li>Let A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5, 6}</li> <li>i) How many functions are there from A to B? How many of these are one-to-one? How many are onto?</li> <li>ii) How many functions are there from B to A? How many of these are onto? How many are one-to-one?</li> </ul>                                                                         | 06 | L2 | CO2 |  |  |  |  |  |  |
|    | b                                          | Let $A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$ and define R on A by<br>$(x_1, y_1)R(x_2, y_2)$ <i>if</i> $x_1 + y_1 = x_2 + y_2$<br>i) Verify that R is an equivalence relation on A<br>ii) Determine the equivalence classes [(1, 3)], [(2.4)] and [(1, 1)].                                                                                                | 07 | L3 | CO2 |  |  |  |  |  |  |

|          | с | Define i) Simple graph ii) Complete graph iii) Sub graph iv) Spanning sub graph v) Induced subgraph vi) Complement of a graph vii) Euler Circuit. Give one example each.                                                                                                  | 07 | L2 | CO2 |
|----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|
|          |   | OR                                                                                                                                                                                                                                                                        |    |    |     |
| 4        | a | Draw the Hasse diagram representing the positive divisors of 36.                                                                                                                                                                                                          | 06 | L2 | CO2 |
|          | b | Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x-5 & \text{for } x > 0\\ 1-3x & \text{for } x \le 0 \end{cases}$ .<br>Find $f^{-1}(0), f^{-1}(1), f^{-1}(3), f^{-1}([-5,5]).$                                                                                      | 07 | L2 | CO2 |
|          | с | Define Graph isomorphism. Determine whether the following graphs are isomorphic<br>or not.<br>$f \xrightarrow{d} c \xrightarrow{w} z$                                                                                                                                     | 07 | L3 | CO2 |
|          | 1 | Module-3                                                                                                                                                                                                                                                                  | 1  |    | 1   |
| 5        | a | Calculate the coefficient of correlation and obtain the lines of regression for the following data:<br>x       1       2       3       4       5       6       7       8       9         y       9       8       10       12       11       13       14       16       15 | 06 | L2 | CO3 |
|          | b | Fit a curve $y = ax^b$ for the following data.                                                                                                                                                                                                                            | 07 | L2 | CO3 |
|          | 0 | x     1     2     3     4     5       y     0.5     2     4.5     8     12.5                                                                                                                                                                                              |    |    |     |
|          | с | Fit a straight line in the least square sense for the following data                                                                                                                                                                                                      | 07 | L2 | CO3 |
|          |   | x         50         70         100         120           y         12         15         21         25                                                                                                                                                                   |    |    |     |
| <u> </u> |   | OR<br>The following and the manufactor of much in Mathematica (a) and Statistics (a) of                                                                                                                                                                                   | 06 | 10 | CO1 |
| 6        | a | The following are the percentage of marks in Mathematics(x) and Statistics (y) ofnine students. Calculate the rank correlation coefficient. $x$ 385042614355674672y416470754455625660                                                                                     | 06 | L2 | CO3 |
|          | b | Fit a second-degree parabola $y = ax^2 + bx + c$ for the data and hence estimate y at $x = 6$ .                                                                                                                                                                           | 07 | L2 | CO3 |
|          |   | x         1         2         3         4         5           y         10         12         13         16         19                                                                                                                                                    |    |    |     |
|          | с | With usual notation, compute $\bar{x}$ , $\bar{y}$ and coefficient of correlation <i>r</i> from the following lines of regression: $y = 0.516x + 33.73$ and $x = 0.512y + 32.52$ .                                                                                        | 07 | L2 | CO3 |

|    | 1 |                                                                                                                                                                                                                                                                                          |                                  |                              |                          |                                    |                          | lule-4                |                    |                   |           |          | I  | 1  | I          |
|----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------|------------------------------------|--------------------------|-----------------------|--------------------|-------------------|-----------|----------|----|----|------------|
| 7  | а | A random v                                                                                                                                                                                                                                                                               | ariable 2                        | X has t                      | he follo                 | owing                              | probab                   | ility fur             | iction:            |                   |           |          | 06 | L3 | CO4        |
|    |   |                                                                                                                                                                                                                                                                                          | x                                | 0                            | 1                        | 2                                  | 3                        | 5                     | 6                  | 7                 |           |          |    |    |            |
|    |   |                                                                                                                                                                                                                                                                                          | P(x)                             | 0                            | k                        | 2k                                 | 3k                       | k <sup>2</sup>        | 2k <sup>2</sup>    | 7k <sup>2</sup> - | +         |          |    |    |            |
|    |   |                                                                                                                                                                                                                                                                                          |                                  |                              |                          |                                    |                          |                       |                    | k                 |           |          |    |    |            |
|    |   | Find $k$ and $c$                                                                                                                                                                                                                                                                         | evaluate                         | P(X)                         | < 6), <i>F</i>           | $P(X \ge 0)$                       | 6) <i>and</i>            | <i>l</i> P(0 <        | <i>X</i> < 5).     |                   |           |          |    |    |            |
|    | b | Find the me                                                                                                                                                                                                                                                                              | an and s                         | tandar                       | d devia                  | tion of                            | f Poiss                  | on distri             | bution             |                   |           |          | 07 | L2 | <b>CO4</b> |
|    | с | The marks of mean 70 and be (i) less the                                                                                                                                                                                                                                                 | d a stan                         | dard de                      | eviation                 | n 5. Fi                            | nd the                   | number                | of studer          |                   |           |          | 07 | L2 | CO4        |
|    |   |                                                                                                                                                                                                                                                                                          |                                  |                              |                          |                                    | (                        | OR                    |                    |                   |           |          |    |    | •          |
| 8  | а | Find the con                                                                                                                                                                                                                                                                             | stant k                          | such th                      | at $f(x)$                | $=\begin{cases}kx\\k\end{pmatrix}$ | $e^{-x}$ (0)<br>0 c      | 0 < x < 1<br>otherwis | is a p.d.<br>e     | f. Fin            | d the mea | an.      | 06 | L2 | CO4        |
|    | b | The probabi<br>12 such per<br>defective ()                                                                                                                                                                                                                                               | ns are n                         | nanufa                       | ctured,                  | find                               | the pro                  | obability             | that (a)           | exact             | ly two w  |          | 07 | L2 | CO4        |
|    | с | If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction.                                                                                                                         |                                  |                              |                          |                                    |                          |                       |                    |                   |           | ne the   | 07 | L2 | CO4        |
| _  | 1 | Module-5           X and Y are independent random variables. X takes values 2, 5, and 7 with                                                                                                                                                                                             |                                  |                              |                          |                                    |                          |                       |                    |                   |           |          |    |    |            |
| 9  | а | X and Y a<br>probability<br>probability 1<br>a) Find the j<br>b) Show tha                                                                                                                                                                                                                | 1/2, 1/2<br>1/3, 1/3<br>oint pro | 4, and<br>and 1/3<br>babilit | 1/4 re<br>3.<br>y distri | especti<br>bution                  | vely. `<br>of X a        | Y take                | values 3,          |                   |           |          | 06 | L2 | CO5        |
|    | b | A coin was                                                                                                                                                                                                                                                                               | tossed 4                         | 400 tin                      | nes and                  | l head                             | turned                   | up216                 |                    | st the            | hypothes  | sis that | 07 | L3 | CO5        |
|    | с | the coin is u<br>In experime                                                                                                                                                                                                                                                             |                                  |                              |                          |                                    |                          |                       | cies of so         | ade w             | ara obtai | ned      | 07 | L3 | CO5        |
|    |   | Rour                                                                                                                                                                                                                                                                                     | nd &                             | Wrin                         | kled &<br>llow           | R                                  | ownig<br>ound &<br>green | - ŕ                   | rinkled &<br>green |                   | Total     |          |    |    |            |
|    |   | 31                                                                                                                                                                                                                                                                                       |                                  |                              | 01                       |                                    | 108                      |                       | 32                 |                   | 556       |          |    |    |            |
|    |   | Theory predicts that the frequencies should be in proportions 9:3:3:1.Examine the correspondence between theory and experiment.                                                                                                                                                          |                                  |                              |                          |                                    |                          |                       |                    |                   |           |          |    |    |            |
|    |   |                                                                                                                                                                                                                                                                                          |                                  |                              |                          |                                    | OR                       |                       |                    |                   |           |          |    |    |            |
| 10 | a | Explain the (iii) Type I a                                                                                                                                                                                                                                                               | • •                              | ,                            | • 1                      | esis (ii                           | ) Signi                  | ficance               | level              |                   |           |          | 06 | L2 | CO5        |
|    | b | <ul> <li>A sample of 100 students is taken from a large population. The mean height of the students in this sample is 160 cm. Can it be reasonably regarded that in the population the mean height is 165 cm and the standard deviation is 10 cm at 5% level of significance?</li> </ul> |                                  |                              |                          |                                    |                          |                       | in the             | 07                | L3        | CO5      |    |    |            |

| c | The nine items of a sample have the following values: 45, 47, 50, 52, 48, 47, 49, 53, | 07 | L3 | CO5 |
|---|---------------------------------------------------------------------------------------|----|----|-----|
|   | 51. Does the mean of these differ significantly from the assumed mean of              |    |    |     |
|   | $47.5?(t_{0.05}=2.31 \text{ for 8 degree of freedom})$                                |    |    |     |

|                 | Low                                  | Lower-order thinking skills            |                                      |  |  |  |  |  |  |  |  |  |  |
|-----------------|--------------------------------------|----------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Bloom's         | Remembering                          | Understanding                          | Applying                             |  |  |  |  |  |  |  |  |  |  |
| Taxonom         | (knowledge): $L_1$                   | (Comprehension): L <sub>2</sub>        | (Application): $L_3$                 |  |  |  |  |  |  |  |  |  |  |
| y Levels        |                                      |                                        |                                      |  |  |  |  |  |  |  |  |  |  |
| <i>y</i> 201010 |                                      | Higher-order thinking skills           |                                      |  |  |  |  |  |  |  |  |  |  |
|                 | Analyzing (Analysis): L <sub>4</sub> | Valuating (Evaluation): L <sub>5</sub> | Creating (Synthesis): L <sub>6</sub> |  |  |  |  |  |  |  |  |  |  |