USN \square
Fourth Semester B.E Degree Examination Mathematical Foundations for Computing, Probability \& Statistics Computer Science \& Allied Engg. branches-21MATCS41

TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Q.No.		Question	M	L	CO
Module - 1					
01	a	Define tautology. Determine whether the following compound statement is a tautology or not. $\{(p \vee q) \rightarrow r\} \leftrightarrow\{\neg r \rightarrow \neg(p \vee q)\}$	06	L2	CO1
	b	Using the laws of logic, prove the following logical equivalence $\left[(\neg p \vee \neg q) \wedge\left(F_{0} \vee p\right) \wedge p\right] \Leftrightarrow p \wedge \neg q$.	07	L3	CO1
	c	Give direct proof and proof by contradiction for the statement "If n is an odd integer then $n+9$ is an even integer"	07	L2	CO1
OR					
02	a	Test the validity of the arguments using rules of inference. $\begin{aligned} & (\neg p \vee q) \rightarrow r \\ & r \rightarrow(s \vee t) \\ & \neg s \wedge \neg u \\ & \neg u \rightarrow \neg t \\ & \therefore p \end{aligned}$	06	L3	CO1
	b	Find whether the following arguments are valid or not for which the universe is the set of all triangles. In triangle XYZ, there is no pair of angles of equal measure. If the triangle has two sides of equal length, then it is isosceles. If the triangle is isosceles, then it has two angles of equal measure. Therefore Triangle XYZ has no two sides of equal length.	07	L3	CO1
	c	If $p(x): x \geq 0, q(x): x^{2} \geq 0, r(x): x^{2}-3 x-4=0, s(x): x^{2}-3>0$ Determine the truth or falsity of the following statement: i) $\exists x[p(x) \wedge q(x)]$ ii) $\forall x[p(x) \rightarrow q(x)]$ iii) $\forall x[q(x) \rightarrow s(x)]$ iv) $\forall x[r(x) \wedge s(x)]$ v) $\exists x[p(x) \wedge r(x)]$ vi) $\forall x[r(x) \rightarrow p(x)]$ vii) $\exists x[r(x) \rightarrow \neg p(x)]$	07	L2	CO1
Module-2					
03	a	Let f and g be functions from R to R defined by $f(x)=a x+b$ and $g(x)=1-x+x^{2}$, If $(g \circ f)(x)=9 x^{2}-9 x+3$ determine a and b.	06	L2	CO2

	b	Let $A=\{1,2,3,4,6\}$ and R be a relation on A defined by $a R b$ if and only if " a is a multiple of b ". Write down the relation R , relation matrix $M(R)$ and draw its digraph.										07	L2	CO2
	c	Prove that in every graph the number of vertices of odd degree is even.										07	L2	CO2
OR														
4	a	The digraph of a relation R defined on the set $A=\{1,2,3,4\}$ is shown below. Verify that (A, R) is a poset and construct the corresponding Hasse diagram.										06	L2	CO2
	b	Let $A=B=C=R$, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by $f(a)=2 a+1, g(b)=\frac{1}{3} b, \forall a \in A, \forall b \in B$. Compute $g \circ f$ and show that $g \circ f$ is invertible. What is $(g \circ f)^{-1}$?										07	L2	CO2
	c	Define Graph isomorphism. Determine whether the following graphs are isomorphic or not.										07	L2	CO2
Module-3														
5	a	Ten competitors in following order: Calculate the rank	in a b 1 1 6 correl	ty 2 6 4 n co	test 3 5 9 ficien	4 $\begin{gathered} \hline 10 \\ \hline 8 \end{gathered}$	$\begin{aligned} & \hline \text { twe } \\ & \hline 6 \\ & \hline 2 \\ & \hline 2 \\ & \hline \end{aligned}$	7 4	A 8 9 10	$\mathrm{d} \mathrm{~B}$ 9 7 5	in the10 8 7	06	L2	CO3
	b	Calculate the rank correlation coefficient. In a partially destroyed laboratory record, the lines of regression of y on x and x on y are available as $4 x-5 y+33=0$ and $20 x-9 y=107$. Calculate \bar{x} and \bar{y} and the coefficient of correlation between x and y.										07	L2	$\mathrm{CO3}$
	c	It is known that v and t are connected by the relation $v=a t^{b}$. Find the best possible values of a and b.										07	L2	$\mathrm{CO3}$

Model Question Paper-II with effect from 2022
USN \square
Fourth Semester B.E Degree Examination Mathematical Foundations for Computing, Probability \& Statistics (Computer Science \& Allied Engg. branches)-21MATCS41

TIME: 03 Hours

Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Q.No.		Question	M	L	CO
Module -1					
1	a	Define tautology. Show that $\{(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)\} \rightarrow r$ is a tautology by constructing the truth table.	06	L2	CO1
	b	Prove the following using the laws of logic $[\neg p \wedge(\neg q \wedge r)] \vee[(q \wedge r) \vee(p \wedge r)] \Leftrightarrow r$.	07	L3	CO1
	c	For any two odd integers m and n , show that i$) \mathrm{m}+\mathrm{n}$ is even ii) mn is odd.	07	L2	CO1
OR					
2	a	Define i) open statement ii) Quantifiers	06	L2	CO1
	b	Write the following argument in symbolic form and then establish the validity: If A gets the Supervisor's position and works hard, then he will get a raise. If he gets a raise, then he will buy a car. He has not purchased a car. Therefore he did not get the Supervisor's position or he did not work hard.	07	L3	CO1
	c	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement. a) $\exists x \exists y[x y=1]$ b) $\exists x \forall y[x y=1]$ c) $\forall x \exists y[x y=1]$ d) $\exists x \exists y[(2 x+y=5) \wedge(x-3 y=-8)]$ e) $\exists x \exists y[(3 x-y=7) \wedge(2 x+4 y=3)]$	07	L2	CO1
Module-2					
3	a	Let $A=\{1,2,3,4\}$ and $B=\{1,2,3,4,5,6\}$ i) How many functions are there from A to B? How many of these are one-to-one? How many are onto? ii) How many functions are there from B to A? How many of these are onto? How many are one-to-one?	06	L2	CO 2
	b	Let $A=\{1,2,3,4,5\} \times\{1,2,3,4,5\}$ and define R on A by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if $x_{1}+y_{1}=x_{2}+y_{2}$ i) Verify that R is an equivalence relation on A ii) Determine the equivalence classes $[(1,3)],[(2.4)]$ and $[(1,1)]$.	07	L3	CO2

c	The nine items of a sample have the following values: $45,47,50,52,48,47,49,53$, 51. Does the mean of these differ significantly from the assumed mean of 47.5 ? $\left(\mathrm{t}_{0.05}=2.31\right.$ for 8 degree of freedom)				07	L3	$\mathrm{CO5}$
	Bloom's Taxonom y Levels	Lower-order thinking skills					
		Remembering (knowledge): L_{1}	Understanding (Comprehension): L_{2}	Applying (Application): L3			
		Higher-order thinking skills					
		Analyzing (Analysis): L_{4}	Valuating (Evaluation): L_{5}	Creating (Synthesis)	: L_{6}		

