## Model Question Paper-I with effect from 2022

USN

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fourth Semester B.E Degree Examination
Complex Analysis, Probability \& Linear Programming (Mechanical Engg. Allied branches)-21MATME41
TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

| Q.N |  | Question |  |  |  |  |  |  | M | L | CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module -1 |  |  |  |  |  |  |  |  |  |  |  |
| 01 | a | With usual notations, derive the Cauchy-Riemann equation in the Cartesian form |  |  |  |  |  |  | 06 | L2 | CO1 |
|  | b | If $\mathrm{f}(\mathrm{z})$ is regular function of z , prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ |  |  |  |  |  |  | 07 | L2 | CO1 |
|  | c | Determine the analytical function whose real part is $y+e^{x} \cos y$ |  |  |  |  |  |  | 07 | L2 | CO1 |
| OR |  |  |  |  |  |  |  |  |  |  |  |
| 02 | a | If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant. |  |  |  |  |  |  | 06 | L2 | CO1 |
|  | b | Show that $w=\log z$ is analytic everywhere except at $z=0$ and hence find its derivative. |  |  |  |  |  |  | 07 | L2 | CO1 |
|  | c | Find the analytical function whose imaginary part is $e^{-x}(x \sin y-y \cos y)$ |  |  |  |  |  |  | 07 | L2 | CO1 |
| Module-2 |  |  |  |  |  |  |  |  |  |  |  |
| 03 | a | Discuss the transformation $w=e^{z}$ |  |  |  |  |  |  | 06 | L3 | CO2 |
|  | b | State and prove the Cauchy Integral theorem |  |  |  |  |  |  | 07 | L2 | CO2 |
|  | c | Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $\omega=i, 0,-i$ |  |  |  |  |  |  | 07 | L2 | CO2 |
| OR |  |  |  |  |  |  |  |  |  |  |  |
| 4 | a | Find the bilinear transformation which maps 1, $i,-1$ to $2, i,-2$ respectively. |  |  |  |  |  |  | 06 | L2 | CO2 |
|  | b | Verify Cauchy's theorem for the integral of $z^{3}$ over the boundary of the rectangle with vertices $z=-1,1,1+i,-1+i$ |  |  |  |  |  |  | 07 | L2 | CO2 |
|  | c | Evaluate $\oint \frac{e^{-z}}{(z-1)(z-2)^{2}} d z$, over the curve $\|z\|=3$ |  |  |  |  |  |  | 07 | L3 | CO2 |
| Module-3 |  |  |  |  |  |  |  |  |  | L2 |  |
| 5 | a | A random variable $X$ has the following probability function: |  |  |  |  |  |  | 06 |  | $\mathrm{CO3}$ |
|  |  |  | -2 | -1 | 0 | 1 | 2 | 3 |  |  |  |
|  |  | $P(x)$ | 0.1 | k | 0.2 | 2k | 0.3 | k |  |  |  |
|  |  | Find the value of k and calculate the mean and variance |  |  |  |  |  |  |  |  |  |
|  | b | Find the mean and standard deviation of the Binomial distribution |  |  |  |  |  |  | 07 | L2 | CO3 |
|  | c | In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 20 . Use Poisson distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 500 packets |  |  |  |  |  |  | 07 | L3 | CO3 |


| OR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | a | The diameter of an electric cable is assumed to be a continuous variable with p.d.f $f(x)=\left\{\begin{array}{c} 6 x(1-x), \quad 0 \leq x \leq 1 \\ 0, \quad \text { elsewhere } \end{array}\right.$ <br> Verify that the above is a valid p.d.f. Also, find its mean and variance. | 06 | L2 | CO3 |
|  | b | In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and Standard deviation of 60 hours. Estimate the number of bulbs likely to burn for <br> i. More than 2150 hours <br> ii. Less than 1950 hours <br> iii. Between 1920 and 2160 hours | 07 | L3 | CO3 |
|  | c | The life of a T.V tube manufactured by a company is known to have a mean of 200 months. Assuming that the life has an exponential distribution, find the probability that the life of a tube manufactured by the company is <br> i. Less than 200 months <br> ii. Between 100 and 300 months <br> iii. More than 200 months | 07 | L3 | CO3 |
| Module-4 |  |  |  |  |  |
| 7 | a | Using Simplex method solve the L.P.P Maximize $Z=3 x_{1}+2 x_{2}$, subject to: $\begin{gathered} 2 x_{1}+x_{2} \leq 5 \\ x_{1}+x_{2} \leq 3 \\ x_{1}, x_{2} \geq 0 \\ \hline \end{gathered}$ | 10 | L3 | CO4 |
|  | b | Using Big -M method, solve the LPP Minimize $Z=2 x_{1}+x_{2}$, subject to: $\begin{gathered} 3 x_{1}+x_{2}=3 \\ 4 x_{1}+3 x_{2} \geq 6 \\ x_{1}+2 x_{2} \leq 3 \\ x_{1}, x_{2} \geq 0 \\ \hline \end{gathered}$ | 10 | L3 | CO4 |
| OR |  |  |  |  |  |
| 8 | a | Explain the canonical form and standard form of an LPP. Convert the following LPP to the standard form <br> Maximize $Z=3 x_{1}+5 x_{2}+7 x_{3}$, subject to: $\begin{aligned} & 6 x_{1}-4 x_{2} \leq 5 \\ & 3 x_{1}+2 x_{2}+5 x_{3} \geq 11 \\ & 4 x_{1}+3 x_{3} \leq 2 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$ $x_{1}, x_{2} \geq 0$ | 10 | L3 | CO4 |
|  | b | Use two -Phase method to solve the LPP Maximize $Z=9 x_{1}+3 x_{2}$, subject to: $\begin{aligned} & 4 x_{1}+x_{2} \leq 8 \\ & 2 x_{1}+x_{2} \leq 4 \end{aligned}$ $x_{1}, x_{2} \geq 0$ | 10 | L3 | CO4 |
| Module-5 |  |  |  |  |  |



|  | Analyzing (Analysis): $\mathrm{L}_{4}$ | Valuating (Evaluation): $\mathrm{L}_{5}$ |
| :---: | :---: | :---: |
| Creating (Synthesis): $\mathrm{L}_{6}$ |  |  |

## Model Question Paper-II with effect from 2022

USN

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fourth Semester B.E Degree Examination
Complex Analysis, Probability \& Linear Programming (Mechanical Engg. And Allied branches)-21MATME41
TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.


|  | c | If the probability that a new-born child is a male is 0.6 , Using Binomial distribution find the probability in a family of 5 children <br> i. There is no boy <br> ii. There is at least one boy <br> iii. There are exactly 3 boys | 07 | L3 | CO 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OR |  |  |  |  |  |
| 6 | a | The p.d.f of a continuous random variable X is given by $f(x)=\left\{\begin{array}{c}k x^{3} \quad 0 \leq x \leq 1 \\ 0, \text { elsewhere }\end{array}\right.$ <br> Find (i) The value of k <br> (ii) $P\left[\frac{1}{3}<X<\frac{1}{2}\right]$ <br> (iii) Mean of $X$ | 06 | L2 | CO 3 |
|  | b | The length of a telephone conversation has an exponential distribution with a mean of 3 minutes. Find the probability that a call <br> i. ends in less than 3 minutes <br> ii. Takes between 3 and 5 minutes | 07 | L3 | CO 3 |
|  | c | In a distribution, $31 \%$ of the items are under 45 and $8 \%$ are over 64 . Find the mean and standard deviation of the distribution. | 07 | L3 | CO 3 |
| Module-4 |  |  |  |  |  |
| 7 | a | Find an optimal solution to the following LPP by computing all possible basic solutions and then finding one that maximizes the objective function. <br> Maximize $Z=2 x_{1}+3 x_{2}+4 x_{3}+7 x_{4}$, subject to: $\begin{aligned} & 2 x_{1}+3 x_{2}-x_{3}+4 x_{4}=8 \\ & x_{1}-2 x_{2}+6 x_{3}-7 x_{4}=-3 \\ & x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \end{aligned}$ | 10 | L3 | $\mathrm{CO4}$ |
|  | b | Using the Simplex method to solve the L.P.P Maximize $Z=3 x_{1}+2 x_{2}$, subject to: $\begin{aligned} & 2 x_{1}+x_{2} \leq 40 \\ & x_{1}+x_{2} \leq 24 \\ & 2 x_{1}+3 x_{2} \leq 60 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$ | 10 | L3 | CO 4 |
| OR |  |  |  |  |  |
| 8 | a | Define the following terms <br> A Linear Programming Problem, Basic solution, Basic feasible solution, Optimal solution, artificial variables of an LPP | 10 | L3 | CO4 |
|  | b | Solve the LPP by the two-Phase method Maximize $Z=5 x_{1}+8 x_{2}$, subject to: $\begin{aligned} & 3 x_{1}+2 x_{2} \geq 3 \\ & x_{1}+4 x_{2} \geq 4 \\ & x_{1}+x_{2} \leq 5 \\ & x_{1}, x_{2} \geq \end{aligned}$ | 10 | L3 | $\mathrm{CO4}$ |



| Lower-order thinking skills |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Bloom's <br> Taxonom <br> y Levels | Remembering <br> (knowledge): $\mathrm{L}_{1}$ | Understanding <br> (Comprehension): $\mathrm{L}_{2}$ | Applying <br> (Application): $\mathrm{L}_{3}$ |  |
|  | Higher-order thinking skills |  |  |  |
|  | Analyzing (Analysis): $\mathrm{L}_{4}$ | Valuating (Evaluation): $\mathrm{L}_{5}$ | Creating (Synthesis): $\mathrm{L}_{6}$ |  |

