Model Question Paper-I with effect from 2022

USN

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Linear Programming (Mechanical Engg. Allied branches)-21MATME41

TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q.1	No.	Question	Μ	L	CO
		Module -1			
01	a	With usual notations, derive the Cauchy-Riemann equation in the Cartesian form	06	L2	CO1
	b	If f(z) is regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	07	L2	CO1
	с	Determine the analytical function whose real part is $y + e^x \cos y$	07	L2	CO1
	1	OR			
02	a	If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant.	06	L2	CO1
	b	Show that $w = \log z$ is analytic everywhere except at $z = 0$ and hence find its derivative.	07	L2	CO1
	c	Find the analytical function whose imaginary part is $e^{-x}(x \sin y - y \cos y)$	07	L2	CO1
		Module-2		I	
03	a	Discuss the transformation $w = e^z$	06	L3	CO2
	b	State and prove the Cauchy Integral theorem	07	L2	CO2
	c	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto the points	07	L2	CO2
		$\omega = i, 0, -i$			
		OR			
4	a	Find the bilinear transformation which maps 1, i , -1 to 2, i , -2 respectively.	06	L2	CO2
	b	Verify Cauchy's theorem for the integral of z^3 over the boundary of the rectangle with vertices $z = -1$, 1, $1 + i$, $-1 + i$	07	L2	CO2
	с	Evaluate $\oint \frac{e^{-z}}{(z-1)(z-2)^2} dz$, over the curve $ z = 3$	07	L3	CO2
		Module-3			•
5	а	A random variable X has the following probability function:	06	L2	CO3
		x -2 -1 0 1 2 3			
		<i>P</i> (<i>x</i>) 0.1 k 0.2 2k 0.3 k			
		Find the value of k and calculate the mean and variance			
	b	Find the mean and standard deviation of the Binomial distribution	07	L2	CO3
	с	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 20. Use Poisson distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 500 packets	07	L3	CO3

OR									
6	a	The diameter of an electric cable is assumed to be a continuous variable with p.d.f	06	L2	CO3				
		$f(x) = \int 6x(1-x), 0 \le x \le 1$							
		$\int (x) = \{0, elsewhere\}$							
		Verify that the above is a valid p.d.f. Also, find its mean and variance.							
	b	In a test on 2000 electric bulbs, it was found that the life of a particular make was	07	L3	CO3				
		normally distributed with an average life of 2040 hours and Standard deviation of 60							
		hours. Estimate the number of bulbs likely to burn for							
		i. More than 2150 hours							
		ii. Less than 1950 hours							
		iii. Between 1920 and 2160 hours							
			07	10	603				
	с	The life of a T.V tube manufactured by a company is known to have a mean of 200	07	L3	CO3				
		months. Assuming that the life has an exponential distribution, find the probability							
		that the life of a tube manufactured by the company is							
		i. Less than 200 months							
		iii More than 200 months							
		Module-4							
7	a	Using Simplex method solve the L P P	10	L3	CO4				
-		Maximize $Z = 3x_1 + 2x_2$, subject to:							
		$2x_1 + x_2 < 5$							
		$x_1 + x_2 < 3$							
		$x_1, x_2 \ge 0$							
	b	Using Big –M method, solve the LPP	10	L3	CO4				
		Minimize $Z = 2x_1 + x_2$, subject to:							
		$3x_1 + x_2 = 3$							
		$4x_1 + 3x_2 \ge 6$							
		$x_1 + 2x_2 \le 3$							
		$x_1, x_2 \ge 0$							
		OR							
8	a	Explain the canonical form and standard form of an LPP. Convert the following LPP to the	10	L3	CO4				
		standard form							
		Maximize $Z = 3x_1 + 5x_2 + 7x_3$, subject to:							
		$6x_1 - 4x_2 \le 5$							
		$3x_1 + 2x_2 + 5x_3 \ge 11$							
		$4x_1 + 3x_3 \le 2$							
		$x_1, x_2 \ge 0$							
	h	$\frac{x_1, x_2 \ge 0}{\text{Use two -Phase method to solve the LPP}}$	10	13	CO4				
		Maximize $7 = 9x_1 + 3x_2$, subject to:	10	LJ	004				
		$4r_1 + r_2 < 8$							
		$2r_1 + r_2 \ge 0$ $2r_2 + r_3 < 4$							
		$x_1, x_2 > 0$							
Module-5									

9	a	Solve the following transportation problem									10		CO5			
							De	estinatio	on						L3	
						А	В		С		D	Avai	labil			
												ity				
		Source	ce	Ι		21	16	5	25		13	1	1			
				I	I	17	18	3	14		23	1	3			
				I	II	33	27	1	18		41	1	9			
				Req	uire	6	10		12		15	4	3			
				me	ents											
	b	Solve	the as	ssignm	ent prob	roblem							10	L3	CO5	
				<u> </u>			Mach	ines								
						М	1	M	2	j	<i>M</i> ₃	M	Ļ			
					J_1	2	,	3	_		4	5				
					J_2	4		5			6	7				
					J_3	7	,	8			9	8				
		J	obs		J_4	3		5			8	4				
		Acciar	a tha	ioha to	difforar	nt machin	00.00.00	to min	imizot	tha to	tal cost					
	ļ	Assigi	i the	jobs to	amerer	it machin	es so as		iiiiize	the to	otal cost				ļ	
10	а	Obtai	n an i	nitial b	asic solu	tion to the	followi	ng trans	portatic	on pro	blem			10	L3	CO5
10							10110		To	<u></u>				10	20	000
						Α	В	С	D	Av	ailability					
				Ι		11	13	17	14		250					
		From	1 _	II		16	18	14	10		300					
				III		21	24	13	10		400					
]	Requir	ements	200	225	275	250							
	b	Five m	en are	e availa	ble to do	five diffe	rent jobs	s. From	past rec	cords,	the time	(in hour	s) that	10	L3	CO5
		each m	han tal	tes to d	lo each jo	b is given	below	Tab	-							
						T	п	100	5 111		IV		I			
				Δ	2)	9		2		1 v 7		/			
				B	6	<u>.</u>	8		7		6					
				C	4	, L	6		5		3					
		M	an	Ũ			Ū		C		U	-				
				D	4	ŀ	2		7		3	1	L			
1				E	5	5	3		9		5					
		Find th	ne assi	gnmen	t of men	to jobs the	l at will m	inimize	the tot:	al tim	e taken					
L	1	I Г														
		F					Lowe	er-orde	r thinki	ng sk	ills					
			Bloo	m's	Re	ememberin	ıg		Unders	tandi	ng		Applyi	ng		
			Тахо	nom	(kn	owledge):	L ₁	(C	ompreh	ensio	n): L ₂	(A	pplicatio	on): L ₃		
			y Lev	veis			I	Highor-	ordor t	hinki	ng chille	1				

Higher-order thinking skills

Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆

Model Question Paper-II with effect from 2022

USN

Fourth Semester B.E Degree Examination Complex Analysis, Probability & Linear Programming (Mechanical Engg. And Allied branches)-21MATME41

TIME: 03 Hours

Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

Q.No.		Question	Μ	L	CO
		Module -1			
01	а	With usual notations, derive the Cauchy-Riemann equation in the polar form	06	L2	CO1
	b	Find the constants a, b, c and d if	07	L2	CO1
		$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3) + 4xy)$ is analytic			
	с	Determine the analytical function whose real part is $e^{2x}(x \cos 2y - y \sin 2y)$	07	L2	CO1
	1	OR		1	
02	а	Show that z^n is analytic. Hence, find its derivative	06	L2	CO1
	b	If f(z) is analytic function show that $\left(\frac{\partial}{\partial x} f(z) \right)^2 + \left(\frac{\partial}{\partial y} f(z) \right)^2 = f'(z) ^2$	07	L2	CO1
	с	Find the regular function whose imaginary part is $e^x siny$	07	L2	CO1
		Module-2			
03	a	Discuss the transformation $w = z^2$	06	L3	CO2
	b	State and prove Cauchy Integral formula	07	L2	CO2
	с	Find the bilinear transformation which maps the points $z = 1, i, -1$ onto the points $\omega = 0, 1, \infty$	07	L2	CO2
		OR			
4	a	Evaluate $\int_C \frac{z^2 - z + 1}{z - 1} dx$, where C is the circle (i) $ z = 1$ (ii) $ z = \frac{1}{2}$	06	L3	CO2
	b	Discuss the transformation $w = z + \frac{1}{z}$	07	L3	CO2
	с	Evaluate $\oint \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)(z-3)} dz$, over the curve $ z = 4$	07	L3	CO2
		Module-3			
5	a	A random variable X has the following probability function:	06	L2	CO3
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		Find the value of K and evaluate $\therefore p[0 < Y < F]$			
		1. $P[0 < X < 5]$ $P[V < 6]$			
		ii. $P[X > 0]$			
	b	Find the mean and variance of a Poisson distribution	07	L2	CO3
	1			1	1

	c	If the probability that a new-born child is a male is 0.6, Using Binomial distribution	07	L3	CO3
		find the probability in a family of 5 children			
		i. There is no boy			
		ii. There is at least one boy			
		iii. There are exactly 3 boys			
		OR			
6	a	The p.d.f of a continuous random variable X is given by	06	L2	CO3
		$f(x) = \int k x^3 0 \le x \le 1$			
		$\int (x)^{-1} (0) dx$, elsewhere			
		Find (i) The value of k			
		(ii) $P \left \frac{1}{2} < X < \frac{1}{2} \right $			
		(iii) Mean of X			
	1.		07	T 2	CO1
	D	I he length of a telephone conversation has an exponential distribution with a mean	07	LS	COS
		of 3 minutes. Find the probability that a call			
		1. ends in less than 5 minutes			
		II. Takes between 5 and 5 minutes			
	c	In a distribution, 31% of the items are under 45 and 8% are over 64. Find the mean	07	L3	CO3
		and standard deviation of the distribution.			
		Module-4			
7	a	Find an optimal solution to the following LPP by computing all possible basic solutions	10	L3	CO4
		and then finding one that maximizes the objective function.			
		<i>Maximize</i> $Z = 2x_1 + 3x_2 + 4x_3 + 7x_4$, subject to:			
		$2x_1 + 3x_2 - x_3 + 4x_4 = 8$			
		$x_1 - 2x_2 + 6x_3 - 7x_4 = -3$			
		$x_1, x_2, x_3, x_4 \ge 0$			
	b	Using the Simplex method to solve the L.P.P	10	L3	CO4
		Maximize $Z = 3x_1 + 2x_2$, subject to:			
		$2x_1 + x_2 \le 40$			
		$x_1 + x_2 \le 24$			
		$2x_1 + 3x_2 \le 60$			
		$x_1, x_2 \ge 0$			
	<u> </u>	OR		<u> </u>	1
8	a	Define the following terms	10	L3	CO4
		A Linear Programming Problem, Basic solution, Basic feasible solution, Optimal solution,			
		artificial variables of an LPP			
	b	Solve the LPP by the two-Phase method	10	L3	CO4
	-	Maximize $Z = 5x_1 + 8x_2$, subject to:			
		$3x_1 + 2x_2 > 3$			
		$x_1 + 4x_2 > 4$			
		$x_1 + x_2 = 1$			
		$ x_1, x_2 = 0$			

					Mo	dule-5						
9	a	Find an i	nitial basic fea	asible so	olution	by Vo	gel's	method to	o the followin	g 06		CO5
		transportati	ion problem.								L3	
			Destination									
				А	В	C	D	E	Availability			
			Ι	3	4	6	8	8	20			
		Source	II	2	10	1	5	30	30			
			III	7	11	20	40	15	15			
			IV	2	1	9	14	18	13			
			Requirements	40	6	8	18	6				
	b	Four jobs producing	are to be done i^{th} job on the j^{tl}	on fou ¹ machi	r diffe ne is gi	rent mac ven belo	chines w	. The cost	(in rupees) o	f 07	L3	CO5
					Mach	ines						
				M	1	M_2		M_3	M_4			
			J_1	15	5	11		13	15			
			J_2	17	7	12		12	13			
		.	J_3	14	1	15		10	14			
		Jobs	J_4	16	5	13		11	17			
		Assign the	iobs to different	machin	es so as	to mini	mize f	he total cos				
		r toorgii the		maemm	c 5 50 d 5	$\frac{1}{OR}$						
10	a	A company	v has three ceme	nt factor	ies loca	ated in ci	ties 1.	. 2. 3 which	supply cement	10	L3	CO5
		to four pro	ects located in t	owns 1.	2.34.	each pla	int can	n supply 6.	1. 10 truckloads			
		of cement of	laily respectivel	y and da	ily cem	ient requ	ireme	nts of the p	rojects are			
		respectivel	y 7, 5, 3, 2 truck	loads. T	The tran	sport cos	sts per	r truckload	of cement (in			
		hundreds o	f rupees) from e	ach plan	t to eac	h projec	t site a	are as follow	WS.			
				-	Pro	oject site	s					
				1		2	3	4				
			1	2		3	11	. 7				
		Factories	2	1		0	6	1				
				5		8	15	9				
		Determine	the optimal dist	ibution	for the	company	y so as	s to minimize	ze the total			
	1.	transportat	ion cost		1 0	C' 1	· 1	1 1 1	(D	10	1.2	CO5
	b	A car hire o	company has on	e car at e	each of	five dep	ots a, l	b, c, d and $($	e. a custom R	10	L3	005
		depote and towns are given in the following distance matrix										
				h the h				d d	P			
		Δ	a	13	0	175		190	200			
		R	135	12	0	130		160	175			
		C	140	11	0	155		170	185			
		D	50	50)	80		80	110			
		E	55	35	5	70		80	105			
		How shoul	d cars be assigned	ed to cus	tomers	so as to	minin	nize the dis	tance travelled?			

Lower-order thinking skills										
Bloom's Taxonom	Remembering (knowledge): L ₁	Understanding (Comprehension): L_2	Applying (Application): L_3							
y Levels	Higher-order thinking skills									
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆							