21MT644

Model Question Paper-1/2 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Subject Title: Signal Processing

TIME: 03 Hours

Max. Marks: 100

Note: 01. 02. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	CO's	Marks
Q.01	a	With the help of neat block diagram explain the basic elements of	L2	CO1	10
		digital signal processing system			
	b	Explain the classification of signals with examples	L2	CO1	10
		OR			
Q.02	a	Explain the concept of frequency in continuous time discrete time signals	L2	CO1	10
	b	Explain with neat diagram analog to digital Conversion process. Also discuss the importance of sampling of analog signal	L2	CO1	10
		Module-2			
Q. 03	a	Explain the block diagram representation of discrete time system and determine the response of the system for the following input signal $draw = 2 \leq n \leq 2$	L2	CO2	10
		$x(n) = \begin{cases} n & -3 \le n \le 3\\ 0 & otherwise \end{cases}$			
		$i)y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$			
		5			
	b	ii) $y(n) = max[x(n + 1).x(n).x(n - 1)]$ Explain the resolution of the discrete time signal in to impulses. Determine the response of the system to the input signal	L3	CO2	10
		$x(n) = \{1,2,3,1\}$ for the impulse response of the system			
		$h(n) = \{1, 2, 1, -1\}$ OR			
<u> </u>	1			~~	10
Q.04	a	Explain the classification of discrete time systems with example and determine if the systems described by the following input-output equations are linear or nonlinear.	L3	CO2	10
		i) $y(n) = nx(n)$			
	1	ii) $y(n) = Ax(n) + B$		G 00	10
	b	Explain theProperties of Convolution Sum and Interconnection of LTI systems with example	L3	CO2	10
	r	Module-3			
Q. 05	a	What is z transform explain its properties with example	L3	CO3	10
	b	Determine the z-transform of the signals (a) $x(n) = (\cos \omega_o n)u(n)$ (b) $x(n) = (\sin \omega_o n)u(n)$	L3	CO3	10
	•	OR			
Q. 06	a	Explain inverse z transform by partial fraction expansion with example	L2	CO3	10

21MT644

		21111044			
	b	Determine the inverse z-transform of	L2	CO3	10
		$X(Z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ for i) ROC: $ z > 1$			
		ii)ROC: z < 0.5			
		Module-4			
Q. 07	a	What is FIR filters and explain the Characteristics of Practical Frequency-SelectiveFilters	L3	CO4	10
	b	Determine the coefficients of a linear-phase FIR filter of length M=15 which has asymmetric unit sample response and a frequency response that satisfies the conditions $H_r(n) = \begin{cases} 1 & k = 0,1,2,3\\ 0.4 & k = 4\\ 0 & k = 5,6,7 \end{cases}$	L3	CO4	10
		OR			
Q. 08	a	Explain Design of FIR differentiators with necessary equations	L3	CO4	10
	b	Design a bandpass filter of length $M = 32$ with passband	L3	CO4	10
		edge frequencies $f_{p1} = 0.2$ and $f_{p2} = 0.35$ and			
		stopbandedge frequencies of $f_{s1} = 0.1$ and $f_{s2} = 0.425$.			
		Module-5			
Q. 09	a	Explain steps involved in designing IIR filter using bilinear transformation	L3	CO4	10
	b	Convert the analog filter with system function $H(S) = \frac{s + 0.1}{(S + 0.1)^2 + 16}$ into a digital IIR filter by means of the bilinear transformation. The digital filter isto have a resonant frequency of $\omega_r = \pi/2$	L3	CO4	10
		OR			
Q. 10	a	Explain the characteristics commonly used Analog filters with necessary equations	L3	CO4	10
	b	Determine the order and the poles of a type I lowpassChebyshev filter that has a1-dB ripple in the passband, a cutoff frequency Ω_p = 1000 π , a stopband frequency of 2000 π , and an attenuation of 40 dB or more for $\Omega \ge \Omega_s$.	L3	CO4	10

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.