Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Subject Title: Aero Engineering Thermodynamics

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Use of Thermodynamic Data Hand Book is permitted

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Distinguish between i) Microscopic and macroscopic approaches of thermodynamics ii) Intensive and extensive Properties system iv) Point function and path function	L2	10
	b	A constant volume gas thermometer containing helium gives reading of gas pressure p of 1000 mm Hg and 1366 mm Hg at ice point and steam point respectively. Assuming a linear relationship of the form $t = \alpha + \beta p$, express the gas thermometer Celsius temperature t in terms of gauge pressure p. What is the temperature recorded by the thermometer when it registers a pressure of 1074 mm Hg?	L3	10
		OR		
Q.02	a	A system undergoes a process in which the pressure and volume are related by an equation of the form $pv^n = a$ constant. Derive an expression for displacement work during this process.	L2	6
	b	Gas confined in a cylinder by a piston at a pressure of 3x 105 N/m2 and a volume of 12000 cm3 changes its state in such a way that the pressure is inversely proportional to the volume in this process if the pressure Falls to 1/3 of its initial value find the magnitude and direction of workflow	L3	8
	с	Derive an expression for work done for the following process i. Constant Pressure process ii. Constant Volume process iii. Constant Temperature process	L2	6
0.00	1	Module-2		6
Q. 03	a	Starting from the first law of thermodynamics for a closed system undergoing a non-cyclic process derive the steady state, steady flow energy equation for a control volume (open system)	L4	6
	b	Describe an expression for heat transfer per unit mass for a reversible polytrophic process taking place in a closed system containing an ideal gas	L2	6
	c	A fluid system undergoes a non-flow frictionless process following the pressure volume relation as $p=5/v+1.5$ where p in bar v is in m3 during the process volume changes from 0.15 to 0.05 m3 and the system rejects 45 kj of heat determine change in internal energy and change in enthalpy OR	L2	8

Q.04	a	Modify the general steady flow energy equation (SFEE) for the	L2	10
		following cases		
		i)Steam turbine with negligible potential energy change if the process is		
		adiabatic		
		ii)Horizontal steam nozzle with negligible entrance velocity of steam, if		
		the process is non-adiabatic		
		iii)Insulated horizontal throttle valve		
	b	A turbine operating under steady flow conditions receives 4500 kg of	L3	10
		steam per hour steam enters the turbine at a velocity of 2800m/min and		
		an elevation of 5.5m and specific enthalpy of 2800kj/kg Its leaves the		
		turbine at a velocity of 5600m/min elevation of 1.5m specific enthalpy		
		of 2300kj/kg heat losses from the turbine to the surroundings amount to		
		16000 kj/h determine the power output of the turbine		
		Module-3		-
Q. 05	а	State the Kelvin-Plank and Clausius statements of the Second Law of	L2	8
		thermodynamics and show that the violation of the former results in the		
-		violation of the later.		
	b	With a simple block diagram represent PMM of II kind and explain why	L2	4
		it is not possible		0
	с	Two reversible engines A and B are connected in series engine A	L2	8
		receives heat from a thermal reservoir at T1 and rejects at the temperature		
		12 while engine B receives heat energy at 12 and rejects to a thermal		
		reservoir at 13. If both engines are equal efficient show that the		
		intermediate temperature T2 is the geometric mean of T1 and T3 what		
		will be the condition for intermediate temperature 12 when both the		
		engines deliver equal power.		
0.06	2	UK Depresent schemetically hast engine hast nump and refrigerator Prove	1.2	8
Q. 00	a	that a reversible angine is more afficient then an irreversible angine	L2	0
		unat a reversible engine is more enforcent unan an ineversible engine		
	h	$P_{\text{rove that }COP} = 1 + COP$ as	12	1
	C	Heat number to be used to heat the house in winter and reverse to cool the		+ 8
	C	heuse in summer. The interior temperature is to be maintained at 20%	1.2	0
		house in summer. The interior temperature is to be maintained at 20 C. heat transfer through the walls and roof is estimated to be 0.525 kJ/s per		
		degree temperature difference. Between the inside and outside if the		
		outside temperature in winter is 5°C. What is the minimum power		
		required to drive the heat nump. If the power requirement is same as in		
		the part a what is the maximum outside temperature for which the inside		
		can be maintained at 20°C		
	1	Module-4		
Q. 07	a	Explain P-T diagram for a pure substance with the help of a neat sketch	L2	6
-		and define i) Triple point ii) Critical Point		
	b	Define the following i) Pure substance i) Triple Point iii) Quality and iv)	L2	6
		Subcooled liquid		
	c	A vessel having a capacity of 0.05 m3 contains a mixture of saturated	L2	8
		water and saturated steam at a temperature of 245C. The mass of the		
		liquid present is 10 kg. Find the following i) The pressure ii) The Mass		
		iii) The specific volume iv) The specific enthalpy v) The Specific entropy		
	·	OR		
Q. 08	a	Define dryness fraction of steam. What are the methods to measure	L3	6
		dryness fraction. With a neat sketch explain any one method.		
	b	Derive an expression for TdS relation	L3	6
	с	Using steam tables, determine the mean specific heat for superheated	L3	8
1		steam		

		i)At 0.75 har, between 100°C and 150° C		
		ii)at 0.5 bar between 300°C and 400°C		
Module-5				
Q. 09	a	With the help of P-V and T-S diagram, derive an expression for air	L3	10
		standard efficiency of Diesel cycle		
	b	The pressure and temperature at the beginning of compression in an air	L3	10
		standard Otto cycle are 102 kPa and 315K. Heat is added during the		
		process at the rate of 250 kJ/kg of air and air is used with a compression		
		ratio of 9. Assuming $\gamma = 1.4$ and R = 287 J/kgK for air, determine i)The		
		thermal efficiency of the cycle ii) The maximum Cycle temperature iii)		
		The maximum cycle pressure iv) Mean effective pressure		
OR				
Q. 10	a	With the help of neat schematic diagram explain the working of Rankine	L3	10
		cycle and derive an expression for efficiency.		
	b	In a steam power cycle, the steam supply is at 15 bar and dry and	L3	10
		saturated. The condenser pressure is 0.4 bar, Calculate the Carnot and		
		Rankine efficiencies of the cycle. Neglect pump work.		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

Model Question Paper-2 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

AERO ENGINEERING THERMODYNAMICS

TIME: 03 Hours

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Use of **Thermodynamics tables** are permitted.

		Module -1	*Bloom's Taxonomy Level	Marks
Q.01	a	Compare the following (i) Open and Closed system (ii) Microscopic and Macroscopic approaches (iii) intensive and extensive properties (iv) Path and Point function (v) Thermal and mechanical equilibrium.	L2	10
	b	State zeroth law of thermodynamics. In 1709, Sir Issac Newton proposed a new temperature scale. On this scale temperature was a liner function of Celsius scale. The reading on this at ice point (0^0 C) and the normal human body temperature (37^0 C) were 0^0 N and 12^0 N respectively. Obtain the relation between the Newton's scale and Celsius scale and Fahrenheit scale.	L5	10
0.00		OR	T 1	4
Q.02	a	Distinguish between work and heat.		4
	b	Prove that work is a path function.	L3	6
	c	A spherical balloon of 0.5m diameter contains air at a pressure of 500 KPa the diameter increases to 0.55m in a reversible process during which pressure is proportional to diameter. Determine the work done by the air during this process.	L5	10
		Module-2		
Q. 03	а	Write the first law of thermodynamics for any process in (i) Open system (ii) Closed system	L2	4
	b	Explain joules experiment with a neat sketch.	L2	10
	с	Prove that internal energy is a property of the system.	L3	6
		OR		
Q.04	a	Construct the steady flow energy equation for an open system and explain the terms involved in it. With the suitable assumptions simplify SFEE for the following systems: (i) Turbine and Compressor (ii) Nozzle and Diffuser.	L3	10
	b	A turbine operating under steady flow conditions receives 4500kg of steam per hour. The steam enters the turbine at a velocity of 2800m/min, an elevation of 5.5m and a specific enthalpy of 2800kJ/kg. It leaves the turbine at a velocity of 5600m/min, an elevation of 1.5m and a specific enthalpy of 2300kJ/kg. Heat losses from the turbine to the surroundings amount to 1600kJ/h. Determine the power output of the turbine.	L5	10
		Module-3		
Q. 05	a	State Kelvin Plank and Clausius statement and justify that they are equivalent.	L3	6
	b	A reversible heat engine operates with two environments. In the first, it draws 1200kW from a source at 400 ^o C and in second it draws 25000kW from a source at 100^{o} C. in both the operations, the engine rejects heat to a thermal sink at 20^{o} C. Determine the operation in which the engine delivers more power.	L5	10
	c	Show schematically and give performance equation for: (i) Heat engine (ii) Refrigerator (iii) Heat pump	L2	4
	1	OR		
Q. 06	a	State and prove Clausius inequality.	L2	10
	b	Prove that entropy is a system.	L2	5

BAE401

Max. Marks: 100

	c	One Kg of water at 273K is heated to 373K by first bringing it in contact with		
		reservoir at 323K and then reservoir at 373K. Determine the change in entropy of	L5	5
		the universe?		
		Module-4		
Q. 07	а	Define: (i) Compressibility factor (ii) Triple point (iii) Critical point (iv) Latent	L1	8
		heat		
	b	Construct Vander Waal's constants in terms of critical properties.	L3	8
	с	Determine the specific volume, enthalpy, and internal energy of wet steam at 18	L5	4
		bar, dryness fraction 0.85		
		OR		
Q. 08	a	Write Maxwell relation and explain the terms involved.	L2	4
	b	A rigid vessel of volume 0.3m ³ contains 10Kg of air at 300K. Determine the		
		pressure that would be exerted by air on the vessel, using (i) Perfect gas equation		
		(ii) Vander Waal's equation. Take for air, R = 287.1J/Kg K, Molecular weight =	L5	8
		28.96, Vander Waal's constants, $a = 135.8$ kN m ⁴ (Kg.mol) ² , $b = 0.0365$		
		m ³ /Kg.mol.		
	с	0.1m ³ of air at 5MPa, 356 ^o C contained in a cylinder expands reversibly and		
		isothermally to 0.25MPa. Calculate for air (i) Work transfer (ii) Heat transfer (iii)	L5	8
		Change in entropy, assuming that air behaves as an ideal gas with $R = 287 \text{ J/Kg}$		
		К		
		Module-5		
Q. 09	a	Construct an expression for air standard efficiency of an Otto cycle, representing	L3	10
		all the process on a P-V and T-S diagram.		
	b	Compare Otto and Diesel cycles.	L4	6
	с	A Carnot engine rejects heat to the heat sink at 32°C and has a thermal efficiency		
		of 52.3%. The work output from the engine is 120kJ. Determine: (i) The	L5	4
		maximum working temperature of the engine and (ii) The heat added in kJ.		
		OR		
Q. 10	a	Sketch the schematic diagram and corresponding TS and HS diagram, derive an	L3	10
		expression for efficiency of Rankine cycle.		
	b	In a single heater regenerative cycle, the steam enters the turbine at 30 bar, 400° C		
		and the exhaust pressure is 0.10 bar. The feed water heater is a direct contact type		
		which operates at 5 bar. Find (i) The efficiency of the cycle (ii) The increase in	L5	10
		meant temperature of heat addition, efficiency, and steam rate, as compared to		
		Rankine cycle (without regeneration). Neglect pump work.		

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.