Model Question Paper-1 with effect from 2022-23 (CBCS 2022 Scheme)

USN

Third Semester B.E. Degree Examination

[Engineering Thermodynamics]

TIME: 03 Hours

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module -1		*Bloom's Taxonomy Level	COs	Marks	
Q.01	а	Define i) Macroscopic and Microscopic approaches ii) Intensive and Extensive properties iii) Point function and Path function iv)Zeroth Law of Thermodynamics v)Thermodynamic Equilibrium	L1	CO1	10
	b	$T(K) = 273 + \frac{100(x - x_i)}{(x_s - x_i)}$ Show	L3	CO1	10
OR					
Q.02	a	Define work and heat, also list the similarities and dissimilarities	L1	CO1	10
	b	Using the p-v diagram Show the $W = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$	L3	CO1	10
	Module-2				
Q. 03	a	State First laws of thermodynamics for a closed system undergoing a cyclic process and also outline in detail joules experiment	L2	CO1	10
	b	With the relevant assumptions Develop Steady flow energy equation (SFEE) for an open system	L3	CO1	10
OR					
Q.04	a	Explain PMMI and PMMII and also outline the factors affecting the process irreversible	L2	CO2	10
	b	State Second laws of thermodynamics and prove the Violation of Kelvin plank statement leads to violation of Clausius statement.	L3	CO2	10
Module-3					
Q. 05	a	Define entropy and outline the principle of increase of entropy.	L2	CO2	10
	b	Estimate the change in entropy of the universe due to the following process i) A Copper block of mass 0.5 kg at 100° C is placed in a Lake of water at 10° C. ii) Two such blocks at 100° C and 0° C respectively are joined together. Take for copper C=0.393Kj/kgK.	L4	CO2	10
0.04	-	OR			10
Q. 06	a b	In detail outline p-T diagram of water Find the dryness fraction, specific volume and internal energy of steam at 7 bar and entropy 2550kJ/kg	L2 L4	CO2 CO2	10
		Module-4			
Q. 07	a	With the help of schematic diagram, explain the working of Vapor absorption refrigeration system	L2	CO2	10
	b	List the important refrigerants and also mention its important properties.	L1	CO2	10
OR					
Q. 08	a	Outline in detail about Psychometric Processes	L2	CO3	10
	b	Define the following terms and write the expressions for the same i) Relative Humidity ii)Specific Humidity iii)Degree of saturation	L1	CO3	10

[BAU304]

Max. Marks: 100

[BAU304]

		iv)Daltons law of partial pressure v) Enthalpy of moist air			
Module-5					
Q. 09	а	With the help of p-v and T-s Diagram outline the efficiency of Otto	L2	CO3	10
		cycle			
	b	In an Air standard Diesel Cycle the Compression ratio is 16. At the	L4	CO4	10
		beginning of adiabatic compression the temperature is 15°C and			
		pressure is 10bar. Heat is added until the temperature at the end of			
		constant pressure process is 1480 ^o C. Determine i) Cut off ratio ii)			
		Heat supplied per kg of air iii) Cycle efficiency.			
OR					
Q. 10	a	Outline the following i)William's Line method ii)Morse Test	L2	CO4	10
	b	The following observations are made during one hour test on a single	L4	CO4	10
		cylinder 4-stroke oil engine. Bore = 300mm, stroke=450mm; mass of			
		fuel used =8.8kg, Calorific value = 41,800kJ/kg, Average speed = 200			
		rpm, mean effective pressure = 5.8 bar, brake load = 1860N, mass of			
		cooling water circulated = 650 kg , Temperature rise = 22° C, diameter of			
		brake drum = 1.22m, Calculate i)Mechanical efficiency ii)Brake thermal			
		efficiency			

Model Question Paper-2 with effect from 2022-23 (CBCS 2022 Scheme)

USN

Third Semester B.E. Degree Examination

[Engineering Thermodynamics]

TIME: 03 Hours

19.03.2024

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module -1			*Bloom's Taxonomy Level	COs	Marks
Q.01	a	Define i) Macroscopic and Microscopic approaches ii) Intensive	L1	CO1	10
		and Extensive properties iii) Point function and Path function			
		iv)Zeroth Law of Thermodynamics v)Thermodynamic Equilibrium			
	b	Show the neat sketch of Liquid in glass thermometer and outline in detail	L3	CO1	10
		about temperature measurement.			
OR					
Q.02	а	Define work and heat, also list the similarities and dissimilarities	L1	CO1	10
	b	Using the p-v diagram Show the $W = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$	L3	CO1	10
		Module-2			
O. 03	a	State First laws of thermodynamics for a closed system undergoing	L2	CO1	10
		a cyclic process and also outline in detail joules experiment			
	b	With the relevant assumptions Develop Steady flow energy	L3	CO1	10
	-	equation (SFEE) for an open system			
	OR				
0.04	а	With the help of line diagram explain heat engine and reversed heat	L2	CO2	10
		engine and also mention about its performance parameters			-
	b	State Second laws of thermodynamics and prove the Violation of	L3	CO2	10
		Kelvin plank statement leads to violation of Clausius statement.			
Module-3					
Q. 05	а	Define entropy and outline the principle of increase of entropy.	L2	CO2	10
	b	A heat engine is supplied with 278kJ/s of haet at a constant fixed	L4	CO2	10
		temperature of 2830C and rejection takes place at 50C. the following			
		results were required.			
		i)208kJ/s of heat rejected ii)139kJ/s of heat rejected iii)70kJ/s of heat			
		rejected. Find which of the results report a reversible cycle, irreversible			
		cycle and impossible cycle.			
0.06		UR In detail outling n T diagram of water	1.2	CO2	10
Q. 00	a h	Find the drugges frequence specific volume and internal energy of steem at		C02	10
	U	7 bar and entropy 2550k I/kg	L4	02	10
		Module-4			
O. 07	а	With the help of schematic diagram, explain the working of Vapor	L2	CO2	10
~ •••	-	absorption refrigeration system		202	
	b	List the important refrigerants and also mention its important properties.	L1	CO2	10
	•	OR			
Q. 08	a	Outline in detail about Psychometric Processes	L2	CO3	10
	b	Define the following terms and write the expressions for the same i)	L1	CO3	10

Max. Marks: 100

[BAU304]

		Relative Humidity ii)Specific Humidity iii)Degree of saturation			
		iv)Daltons law of partial pressure v) Enthalpy of moist air			
Module-5					
Q. 09	a	With the help of p-v and T-s Diagram outline the efficiency of	L2	CO3	10
		Diesel cycle			
	b	The pressure and temperature at the begging of compression in air	L4	CO4	10
		standard otto cycle are 102kpa and 315K.Heat is added during the			
		process at the rate of 250kJ/kg of air and air is used with the			
		compression ratio of 9. Assuming $v = 1.4$ and R = 287J/kgK for air.			
		Determine i) Thermal efficiency of the cycle ii)Maximum cycle			
		temperature iii)Maximum cycle pressure			
OR					
Q. 10	a	Outline the following i)William's Line method ii)Morse Test	L2	CO4	10
	b	The following observations are made during one hour test on a single	L4	CO4	10
		cylinder 4-stroke oil engine. Bore = 300mm, stroke=450mm; mass of			
		fuel used =8.8kg, Calorific value = 41,800kJ/kg, Average speed = 200			
		rpm, mean effective pressure = 5.8 bar, brake load = 1860 N, mass of			
		cooling water circulated = 650 kg , Temperature rise = 22° C, diameter of			
		brake drum = 1.22m, Calculate i)Mechanical efficiency ii)Brake thermal			
		efficiency			