Model Question Paper-1/2 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Subject Title: Theory of Machines

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			BTL	Marks
Q. 01	a	Define the following: i) Kinematic pair, ii) Kinematic Chain iii) Mechanism iv) Structure v) Machine vi) Inversion	L1	6
	b	Explain with neat sketch quick return mechanism.	L2	8
	c	Describe with neat sketches inversions of single slider crank chain.	L1	6
OR				
Q. 02	a	Define linear and angular acceleration.	L1	4
	b	A four bar mechanism has a fixed link $\mathrm{AD}=1 \mathrm{~m}$ driving crank $\mathrm{AB}=0.3 \mathrm{~m}$, follower link $\mathrm{CD}=0.6 \mathrm{~m} \&$ the connecting link 1.2 m . The crank rotates at 300 rpm , clockwise, with an angular acceleration of $200 \mathrm{rad} / \mathrm{sec}^{\wedge} 2$ anticlockwise direction. When the angle made by the crank with the fixed link is 135 degree, in the anit-clockwise direction, determine - Angular velocity of link BC - Angular acceleration of CD	L4	16
Module-2				
Q. 03	a	What is Interference? Explain the method of avoiding it	L1	10
	b	Two gear wheels mesh externally are to give a velocity ratio of 3. Involute teeth are of 6 mm module and of 20 degree pressure angle. Addedndum is one module and the pinion rotates at 400 rpm . Calculate the number of teeth on each gear, to aviod interference, length of arc of contact, maximum velocity of sliding, arc of contact and contact ratio	L4	10
OR				
	a	Draw the profile of a cam operatinig a roller reciprocating follower and with the following data : Minimum radius of cam $=25 \mathrm{~mm}$ Lift $=30 \mathrm{~mm}$ Roller diameter $=15 \mathrm{~mm}$ The cam lifts the follower for 120° with SHM, followed by a dwell period of 30°. Then the follower lowers down' during 150° of cam rotation with uniform acceleration and retardation followed by a dwell. period. If the cam rotates at a uniform speed of 150 rpm . Calculate the maximum velogity and acceleration of follower during the descent period.	L4	20
Module-3				
Q. 05	a	Explain with an example the static force analysis of machinery.	L2	(6
	b	Determine the various forces on the links shown in figure	L4	(14

Model Question Paper-1/2 with effect from 2022-23 (CBCS Scheme)

USN \square

Fourth Semester B.E. Degree Examination Subject Title: Theory of Machines

TIME: 03 Hours
Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			BTL	$\overline{\mathrm{Ma}}$
Q. 01	a	Conclude Inversions of double slider crank chain mechanism applied to elliptical trammel	L4	6
	b	What is quick return motion? Explain with neat sketch crank and slotted lever mechanism.	L1	8
	c	Illustrate Kinematic Pair and Mechanism	L3	6
OR				
Q. 02	a	Define linear and angular acceleration.	L1	4
	b	A four bar mechanism ABCD is made up of four links, pin jointed at ends. AD is a fixed link which is 180 m long. The links AB, BC, and CD are $90 \mathrm{~mm}, 120 \mathrm{~mm}$ and 120 mm long respectively. At certain instant, the link AB makes an angle of 60° with the link $A D$. If the link $A B$ rotates at a uniform speed OF 100RPM clockwise determine: i) angular velocity of the links BC and CD ii) Angular acceleration of the links CD and CB.	L4	16
Module-2				
Q. 03	a	In figure the fixed annular wheel B have 92 teeth. Wheel C and D have 25 and 15 teeth respectively. Wheel $\mathrm{E}=52$ teeth. If the arm A rotates at 130 rpm , solve this for speed of E.	L3	10

	b	The TMD for a four stroke gas engine may be assumed for simplicity to be represented by 4 triangles the area of which from the line of zero pressure as follows. Expansion $=35.5 \mathrm{~cm} 2$, suction $=$ 3.5 cm 2 , Exhaust $=5 \mathrm{~cm} 2$, compression $=$ 14 cm 2 . Each sq-cm represents 295 Nm of work. Assuming the resisting moment to be uniform, find the mass of the rim of the flywheel required to keep the mean speed 200 rpm within $\pm 2 \%$ of the mean speed. Radius of the rim may be taken as 75 cm .	L1	10
OR				
Q. 08	a	Compare flywheel and Governor	L4	10
	b	Derive the equation for speed and height of the Porter governor by resolution of forces	L3	10
Module-5				
Q. 09	a	Derive the equation of total frictional torque flat collar bearing by considering uniform pressure	L3	10
	b	A flat foot step bearing 300 mm in diameter supports a load of 10 kN . If the coefficient of friction is 0.1 and speed of the shaft is 60 rpm , find the power lost in friction, assuming a) uniform pressure b) uniform wear	L1	10
OR				
Q. 10	a	Derive an expression for length of open belt drive.	L3	10
	b	A rope drive is to transmit 250 kW from a pulley of 1000 mm diameter running at a speed of 250 rpm . The semi groove angle is 22.5° and the angle of lap is 180°. The ropes used are 50 mm diameter and their mass is 1.3 kg per meter length. Each rope has a safe maximum pull of 2000 N . The coefficient of friction between rope and pulley is 0.3 . Find the number of ropes required.	L1	10

