USN

Fourth Semester B.E. Degree Examination

Subject Title: FLUID MECHANICS AND FLUID MACHINES

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. Question on a topic of a Module may appear in either its 1st or 2nd question

Module -1			RBT	Marks
Q. 01	a	Define the following terms with S.I units: i. Weight density and Mass density ii. Specific gravity and specific volume iii. Absolute viscosity and kinematic viscosity iv. Capillarity	L1	8
	b	State and prove the Pascal's law.	L1	8
	c	An oil film of thickness 115 mm is used for lubricating between a square plate of size $0.8 \times 0.8 \mathrm{~m}$ and an inclined plane having an inclination of 30° with the horizontal. The weight of the square plate is 300 N and slides down the plane with a uniform velocity of $0.3 \mathrm{~m} / \mathrm{s}$. Find the dynamic viscosity of oil	L2	4
OR				
Q. 02	a	Define (i) absolute pressure (ii) gauge pressure (iii) vacuum pressure	L1	6
	b	Derive the expression for the Centre of pressure of the vertical plane surface submerged in a liquid	L2,L3	8
	c	A U-tube differential manometer is used to measure the pressure of oil of a specific gravity of 0.85 flowing in a pipeline. Its left limb is connected to the pipe and the right limb is open to the atmosphere. The under of pipe is 100 mm the level of mercury level in the right limb. If the difference of mercury level in the two limbs is 160 mm . Determine the absolute pressure of the oil in the pipe. Take specific gravity of mercury is 13.6	L3	6
Module-2				
Q 03	a	Define i. Buoyancy ii. Centre of Buoyancy iii. Meta-centre iv. Meta-centric height	L1	8
	b	Derive an experimental method of determination of metacentric height of a floating body	L2,L3	6
	c	A wooden block of specific gravity 0.75 floats in water. If the size of the is 1 mx 0.5 mx 0.4 m , find its metacentric height.	L3	6
OR				
Q. 04	a	Explain different types of fluid flow	L2	6
	b	Derive continuity equation for three-dimensional fluid flow in Cartesian co-ordinates	L2, L3	8
	c	The stream function for a 2D flow is $\psi=8 \times \mathrm{y}$. Calculate the velocity at $(4,5)$ and find the velocity potential function	L3	6
Module-3				

Fourth Semester B.E. Degree Examination Subject Title: FLUID MECHANICS AND FLUID MACHINES

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. Question on a topic of a Module may appear in either its 1st or 2 nd question

Module -1			RBT	Marks
Q. 01	a	State newtons law of viscosity and explain the different types of fluids.	L1	6
	b	Derive an expression for a capillary rise of a liquid	L2	6
	c	Two large plane surfaces are 2.4 cm apart. Space between those surfaces is filled with glycerine whose dynamic viscosity is $8.1 \times 10^{-1} \mathrm{NS} / \mathrm{m}^{2}$. The surface area of the plate is $0.5 \mathrm{~m}^{2}$ and determine force required to drag that plate at a speed of $0.6 \mathrm{~m} / \mathrm{s}$ to the below conditions (i) Thin plate is at middle of two plane surface. (ii) Thin plate is at a distance of O .8 m from one of the plane surface	L3	8
OR				
Q. 02	a	List the different types of manometers and explain any two types with a neat sketch.	L1, L2	6
	b	Prove that pressure intensity at a point in static fluid is same in all direction	L2	7
	c	A Stone weighs 392.4 N in air and 196. N in water. Compute the volume of stone and its specific gravity	L3	7
Module-2				
Q 03	a	Determine the condition of equilibrium for a floating body with a neat sketch.	L2	4
	b	Explain the method to find metacentric height experimentally	L2	8
	c	A solid cylinder of diameter has a height 3 meters. Find the meta centric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder is 0.6 .	L3	8
OR				
Q. 04	a	The velocity vector in a fluid flow is given by $V=4 x^{2} i-10 x^{2} y j+2 t k$. Determine the velocity and acceleration of a fluid particle at $(2,1,3)$ at time $\mathrm{t}=1$	L3	8
	b	Differentiate 1) laminar \& turbulent flow (ii) steady and unsteady flow	L2	4
	c	The velocity potential for a 2D potential flow is given by $\theta=x(2 y-$ 1) determine velocity and steam function at the point $P(4,5)$	L3	8
Module-3				
Q. 05	a	Derive Eulers equation of motion for a ideal fluid and hence deduce Bernoulli's equation of motion	L1	10
	b	The water is flowing through the 100 m length pipe having 600 mm and 300 mm diameters at upper end and lower ends respectively.	L3	10

		Slope of pipe is 1 in 30 . Determine the pressure at lower end if pressure at upper end is $19.62 \mathrm{~N} / \mathrm{cm}^{2}$		
OR				
Q 06	a	Derive an expression for actual discharge through venturimeter	L2	10
	b	An orifice meter with 10 cm diameter is inserted in a pipe of 20 cm diameter. The pressure gauges fitted upstream and down stream of the orifice meter gives readings of $19.62 \mathrm{~N} / \mathrm{cm}^{2}$ and $9.81 \mathrm{~N} / \mathrm{cm}^{2}$ respectively. Coefficient of discharge for the meter is given as 0.6 . Find the discharge of water through the pipe	L3	10
Module-4				
Q. 07	a	Write a note on HGL and TEL	L1	6
	b	Determine the head lost due to friction in a pipe of diameter 300 mm and length 50 m through which water is flowing at velocity $3 \mathrm{~m} / \mathrm{s}$ use darcy and chezys formula. Tale $c=60$ and v for water is 0.01 stoke.	L3	10
	c	Explain the different types of minor losses in the pipe	L2	4
OR				
Q. 08	a	For the laminar flow through the circular pipe prove that shear stress variation across the pipe section is linear.	L3	10
	b	Fluid of viscosity $0.7 \mathrm{~N} \mathrm{~S} / \mathrm{m}^{2}$ and specific gravity 1.3 is flowing through circular pipe of diameter 100 mm , maximum shear stress at pipe wall is $196.2 \mathrm{~N} / \mathrm{m}^{2}$ Find the pressure gradient and Reynolds number.	L3	10
Module-5				
Q. 09	a	Explain the Rayleigh's and Buckingham's π theorem in dimensional analysis	L2	8
	b	Define the following dimensionless numbers and their significance i) ReynJh's number ii) Mach number	L1	4
	c	Using Buckingham's π theorem prove that frictional torque T of a disc of diameter D rotating at a speed of N in a fluid of viscosity μ and density ρ in a turbulent flow is given by $T=D^{5} N^{2} \rho \phi\left[\frac{\mu}{D N \rho}\right]$	L3	8
OR				
Q. 10	a	Explain the working of a centrifugal pump and reciprocating compressor with a neat sketch.	L2	10
	b	The diameter and width of a centrifugal pump impeller are 50 cm 2.5 cm . The pump runs at 1200 rpm . The suction head is 6 m and delivery head is 40 m . The frictional drop in suction is 2 m and in delivery 8 m .the blade angle at outlet is 30^{0}. The manometric efficiency is 80% and overall efficiency is 75%. Determine the power required to drive a pump. Also calculate the pressure at the suction and delivery side of the pump	L3	10

