		MODEL QUESTIONN PAPER							
		Outcome Based Education (OBE) and Choice Based Credit System ((CBCS)						
		B.E. in Biotechnology							
Course Name: Cell Biology and GeneticsCourse code: BBT301									
		Third Semester BE Degree Examination Jan/Feb 2024							
Time	e:3h	M	ax marl	cs: 100					
		Note : answer any FIVE full questions, choosing ONE full quest	ions fron	n each r	nodule				
		Module-1			1				
1	a.	What are Microtubules? outline structure and function of microtubules in	CO1		10				
		detail with neat diagram		L1	10				
	b.	Interpret structure and function of A membrane-bound cell organelle that	CO1	L2	10				
		contains digestive enzymes	001		10				
		or			1				
2	a.	With a neat Labeled diagram describe the structural organization of	CO1	L1	10				
		prokaryotic cell with suitable example	GOL						
	b.	Summarise types of intermediate filaments with suitable examples.	COI	L2	10				
		Module-2			1				
3	a.	Distinguish between Prophase of Meiosis I with Prophase II of meiosis II	CO2	L2	10				
	1	with neat labeled diagram							
	b.	Define quorum sensing? Explain the molecular mechanism of quorum	CO2	L1	10				
		sensing in Bacteria.							
		Or			1				
4	a.	Describe the mechanism involved in biofilm formation with a suitable	CO2	L1	10				
	1	example							
	b.	Paraphrase on the mechanism involving G Protein coupled receptor in	CO2	L2	10				
		Signal transduction.							
		<u>Module-5</u>	1						
3	a.	A These as example	CO2	L2	10				
	h	All rase as example							
	D.	suitable example	CO2	L3	10				
		suitable example							
6		Differentiate between active and passive membrane transport	CO^{2}	12	10				
0	 h	Ulustrate on translocation of Socratory proteins cross the EP membrane	CO_2		10				
	υ.	Modulo.4	02	L3	10				
7	0	Present the complementary gene interaction by taking flower colour in							
	а.	sweet neas as an example	CO3	L3	10				
	h	Analyse the structure of Metanhase chromosome along with its Chemical							
	υ.	Components	CO1	L4	10				
		components.							
8	9	Apply Hershey and Chase experiment demonstrating DNA as genetic							
0	u.	material	CO3	L3	10				
-	h	Organize the structure of nucleosome with neat labeled diagram	CO1	Ι4	10				
	0.	Module-5		ייש					
9	я	Explain XX-XY, XX-XO, ZZ-ZW and ZZ-ZO type of sex determination	CO3	L3	10				
	h.	Prioritize on i) Interference and Coincidence							
	0.	ii) Chromosomal Map and linkage map	CO3	L4	10				
		0r	I						

10	a.	Make use of Colour blindness and Haemophilia to explain X linked recessive inheritance	CO3	L3	10
	b.	Point out on Hardy-Weinberg principle relates genotypes and allelic frequencies	CO3	L4	10

CO1: To Describe the structure and function of cell and Cell organelles CO2: Illustrate on Concepts of cell signalling and transport of Molecules CO3: Analyze the principles and concept of genetics and population genetics