MODEL QUESTIONN PAPER						
	0	utcome Based Education (OBE) and Choice Based Credit Sys	stem (C	BCS)		
		B.E. in Biotechnology				
Course Name: BIOCHEMISTRY + LAB Course code: BBT303						
		Third Semester BE Degree Examination Jan/Feb 20	24			
Time: 3 hours				Max marks: 100		
	No	te: answer any FIVE full questions, choosing ONE full questions	from e	ach m	odule	
		Module-1				
1	a.	List different types of chemical reactions. Explain any two of	001	T 1	1.0	
		them in detail with an example	CO1	L1	10	
	b.	Derive Henderson-Hasselbalch equation. Explain the	G0.1		1.0	
		mechanism of action of buffer with an example.	CO1	L2	10	
		or				
2	a.	Relate different types of carbohydrates.	CO1	L1	10	
	b.	Classify different levels of protein structure and explain the	CO1	1.2	10	
		relationship between them	CO1	L2	10	
		Module-2				
3	a.	What is the chemical basis for large negative free energy for	CO2	L1	10	
		ATP?				
	b.	Explain the Z-scheme of Photosynthesis	CO2	L2	10	
		or		1		
4	a.	What electron transport chain and oxidative phosphorylation?	CO2	L1	10	
	b.	Illustrate the importance of coupling reactions in biological	CO2	L2	10	
		systems.				
		Module-3	002	T 2	10	
5	a.	Illustrate glycolysis in detail	CO2	L2	10	
	b.	Build the condition of galactosemia	CO3	L3	10	
_		Of Demonstrate that TCA avalage annelihaliage nature	CO2	1.2	10	
6	a.	Demonstrate that TCA cycle is amphibolic in nature.	CO3	L2	10	
	b.	Make use of schematic diagram to explain glycogenolysis	CO3	L3	10	
7	_	Module-4	002	1.0	10	
7	a.	Explain digestion, mobilization and transport of fats	CO ₄	L2	10	
	b.	Develop treatment measures to sphingolipidoses.	CO4	L3	10	
8		Or Develop R evidetion of fetty said telving polimitie said as an				
8	a.	Develop β- oxidation of fatty acid taking palmitic acid as an	CO3	L3	10	
	b.	example Classify lipoproteins and discuss them in detail.	CO3	L2	10	
	υ.	Module-5	1 003	L2	10	
9	2	Construct schematic representation urea cycle that removes				
🦻	a.	toxic NH ₃ from human body with its regulation	CO3	L3	10	
	b.	Analyse Phynylketonuria under i) enzyme defect ii)	+		_	
	<i>J</i> .	manifestation iii) symptoms iv) diagnostic tests	CO4	L4	10	
	l	or	1	I	<u> </u>	
10	a. Make use of schematic diagram to illustrate the denovo		002		1.0	
		synthesis of pyrimidines.	CO3	L3	10	
	b	Infer the clinical disorder, cause and treatment of gout.	CO4	L4	10	

- CO1: Apply the knowledge of organic compounds, functional groups and their properties to study the types of reactions, , pH ,buffers and biomolecules
- CO2: Assess the concepts of thermodynamics to study the high energy compounds, their properties, Photosynthesis, ETC and analyze them
- CO3: Illustrate the metabolic pathways of biomolecules and analyse their regulations
- CO4: Establish the Biochemistry pathophysiology associated with various disorders of metabolism and analyze them