Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

Sixth Semester B.E. Degree Examination

Subject Title: Biostatistics and Tools + Lab

		Time : 3 hours Max m	1 narks: 1	00	
	N	Jote : Answer any FIVE full questions, choosing ONE full questions from each	<u>h modu</u>	ıle	
		Module-1			
1	a.	You have access to a dataset obtained from a biology laboratory experiment, which includes measurements of cell growth rate (in cells per hour) and the corresponding nutrient concentration (in grams per liter) for a set of 5 samples. Your objective is to create a simple scatter plot to visually represent the relationship between cell growth rate and nutrient concentration in the experiment.Cell Growth Rate (cells/hour)Nutrient Concentration (g/L)1021542062583010	CO1	L1	10
	b.	You are provided with a dataset containing the measurements (in millimeters) of the wingspan of 50 butterflies. Your task is to create a histogram to represent the frequency distribution of the wingspan measurements. Additionally, generate a frequency polygon and an ogive based on the given data Wingspan (mm) 90, 92, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 145, 146, 148, 150, 152, 154, 155, 156, 158, 160, 162, 164, 165, 166, 168, 170, 172.	CO1	L2	10
		Or			
2	a.	You are provided with a dataset containing the number of chloroplasts observed in 20 plant cells under a microscope. Your task is to calculate the mean (average) number of chloroplasts based on the given data. Number of Chloroplasts: 85, 72, 90, 65, 78, 92, 88, 76, 82, 70, 68, 75, 79, 83, 87, 91, 74, 81, 89, 84"	CO1	L1	10
	b.	"You have access to a dataset comprising the number of bacteria colonies observed on agar plates from 20 samples taken from a pond. Your objective is to compute the standard deviation and coefficient of variation for the number of bacteria colonies from the provided data. Number of Bacteria Colonies: 85, 72, 90, 65, 78, 92, 88, 76, 82, 70, 68, 75, 79, 83, 87, 91, 74, 81, 89, 84"	CO1	L2	10
		Module-2			
3	a.	You are provided with a dataset containing the measurements of dissolved oxygen levels (in mg/L) and the corresponding water temperature (in degrees Celsius) recorded at different depths of a lake over the past 5	CO2	L1	10

BBT402

		months. Your task is to estimate the correlation between dissolved oxygen			
		levels and water temperature using the provided data.			
		Depth (m) Dissolved Oxygen (mg/L) Water Temperature (°C)			
		2 75 95			
		$3 \qquad 7 \qquad 9$			
		4 65 85			
		5 6 8			
		5 0 8			
	h	Vou have access to a dataset obtained from a biology laboratory			
	0.	avalation a unitable measurements of enzyme activity (in units)			
		and the corresponding substrate concentration (in millimoles per liter) for a			
		and the corresponding substrate concentration (in minimoles per fiter) for a			
		set of 5 samples. Four objective is to compute Karl Pearson's coefficient of			
		correlation between enzyme activity and substrate concentration using the			
		provided data. Γ	CO 2	1.2	10
		Enzyme Activity (units) Substrate Concentration (mmol/L)	002	L2	10
		20 6			
		25 8			
		30 10			
	r	Or	1		
4	a.	You are conducting an experiment to investigate the relationship between			
		the concentration of a fertilizer solution and the growth of tomato plants.			
		You have collected data on the concentration of the fertilizer solution (in			
		You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato			
		You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear			
		You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship			
		You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."	CO3	Т 1	10
		The concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm)	CO3	L1	10
		the concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm) 10 5	CO3	L1	10
		The concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm) 10 5 15 7	CO3	L1	10
		The concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm) 10 5 15 7 20 9	CO3	L1	10
		the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)1051572092511	CO3	L1	10
		the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013	CO3	L1	10
		the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013	CO3	L1	10
	Ь.	the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013You are conducting an experiment to investigate the probability of	CO3	L1	10
	b.	the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your	CO3	L1	10
	b.	the concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your experiment, you have treated 10 seeds with the hormone, and you want to	CO3	L1	10
	b.	The concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your experiment, you have treated 10 seeds with the hormone, and you want to determine the probability distribution of the number of seeds that	CO3	L1	10
	b.	The concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth."Fertilizer Concentration (g/L)Plant Growth (cm)10515720925113013You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your experiment, you have treated 10 seeds with the hormone, and you want to determine the probability distribution of the number of seeds that germinate. Your task is to analyze the data using binomial distribution to	CO3	L1 L2	10
	b.	The concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship 	CO3	L1 L2	10
	Ь.	The concentration of a fertilizer solution and the growth of tomato plants.You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship 	CO3	L1 L2	10
	b.	The concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm) 10 5 15 7 20 9 25 11 30 13 You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your experiment, you have treated 10 seeds with the hormone, and you want to determine the probability distribution of the number of seeds that germinate. Your task is to analyze the data using binomial distribution to understand the likelihood of different outcomes. Number of Seeds Treated: 10 Probability of Germination (p): 0.8	CO3	L1 L2	10
	b.	The concentration of a fertilizer solution and the growth of tomato plants. You have collected data on the concentration of the fertilizer solution (in grams per liter) and the corresponding increase in height of the tomato plants (in centimeters) after a certain period. Your task is to perform linear regression analysis on the provided dataset to determine the relationship between fertilizer concentration and plant growth." Fertilizer Concentration (g/L) Plant Growth (cm) 10 5 15 7 20 9 25 11 30 13 You are conducting an experiment to investigate the probability of germination of seeds treated with a particular growth hormone. In your experiment, you have treated 10 seeds with the hormone, and you want to determine the probability distribution of the number of seeds that germinate. Your task is to analyze the data using binomial distribution to understand the likelihood of different outcomes. Number of Seeds Treated: 10 Probability of Germination (p): 0.8	CO3	L1 L2	10

5	a.	How of individ with a efficacy	do ca uals c propc y?	se report onsuming osed clini	s, detailing a newly d cal trial in	adverse eveloped h assessing th	liver-related sy erbal supplemen ne supplement's	mptoms in nt, compare safety and			
		Case	Age	Gender	Symptoms	Duration of Use	Other Medications/Su	upplements			
		1	45	Female	Elevated liver enzymes, jaundice, abdominal pain	2 weeks	None reported		CO4	L2	10
		2	55	Male	Fatigue, nausea, dark urine	1 month	None reported				
		3	38	Male	Loss of appetite, yellowing of the skin	3 weeks	None reported				
	b.	Calcula exposu commu Expos	ite the re to a unity. ure to Yes No Yes Yes Yes	relative r new pest Pesticide	isk and odds icide and the Crop Dam Yes No Yes Yes No	age	ess the associat	ion between in a farming	CO4	L3	10
6	9	Compa	re the	effectiven	less of prosp	Or ective and re	trospective stuc	ly designs			
0	a.	in evalu outcom Study I Prosp Prosp Retros Retros	uating less in a Design ective ective spective ective spective	the long-t clinical s Patient 1 2 7e 3 4 7e 5	erm effects of setting. ID Medicat Yes No Yes Yes No	of a new me	dication on patie Patient Outcome Improved Worsened Improved Worsened Improved	ent	CO4	L2	10
	b.	Design relief n control effectiv lower b	a doul nedicat group eness back pa	ble-blind tion comp , and anal in reducir ain Group	experiment to ared to a star yze the data ng pain intens	o assess the idard medic to determing sity among p ain	efficacy of a nev ation, utilizing a e the treatment's participants with Pain	w pain a placebo a chronic	CO4	L3	10

BBT402

		ID	Assignment	Intensity	Intensity				
				Before	After				
				Treatment	Treatment				
		1	Placebo	7	6				
		2	Standard	8	5				
		3	New Medication	9	4				
		4	Placebo	6	6				
		5	New Medication	7	3				
				Module-4					
7	a.	Design an	experiment utilizing	g a randomiz	ed complete b	lock design			
		(RCBD) to i	nvestigate the effect	iveness of thre	e different ferti	lizers on the			
		growth of to	ithin distinct						
		blocks of so	il types. Analyze the	data using ana	lysis of varianc	e (ANOVA)			
		to assess if	there are significan	t differences i	in plant growth	among the			
	fertilizers within each soil type and across all soil types								10
		Sample S	oil Type Fertilizer	Plant Gro	owth (cm)		005	L3	10
		1 S	andy Fertilizer A	A 12					
		2 S	andy Fertilizer I	3 14					
		3 L	oamy Fertilizer	A 16					
		4 L	oamy Fertilizer	B 18					
	_	<u>5</u> C	Clayey Fertilizer	A 10					
	b.	Design a Lat	lifferent						
	irrigation methods on the growth of four different crop varieties in a								
		controlled ag	gricultural setting. An	nalyze the data	using analysis of	of variance			
		(ANOVA) to	determine significa	nt differences i	n crop growth a	mong the			
		irrigation me	ethods and crop varie	eties, accountin	g for potential c	confounding			
		factors	Touisto Touisstion				COF	тл	10
		Plot Crop V	ariety Irrigation	Method C	rop Growth (ch	n)	COS	L4	10
		1 A 2 D		1	2				
		2 B 2 C	2	1	.4 .5				
		3 C	5	1	6				
		4 D 5 A	1		18				
		JA	L		10				
				Or					
8	a.	Design a full	l factorial experimen	t to investigate	the impact of the	hree factors			
		(A, B, and C)	() at two levels each	on the yield of	a crop. Each fac	ctor			
		represents a	different agricultural	l treatment. An	alyze the data to	o determine			
		the main effe	ects of each factor an	nd any interacti	on effects betwe	een factors			
		on the crop y	vield						
		Sample	Factor A Factor	B Factor C	Crop Yield		CO5	L3	10
		1	Low Low	Low	10				
		2	High Low	Low	12				
		3	Low High	Low	14				
		4	High High	Low	16				
		5	Low Low	High	18				
	b.	Using a Plac	kett-Burman design,	determine the	significant facto	ors			
		influencing t	he yield of a chemic	al reaction in a	laboratory setti	ng. Design	CO5	14	10
		an experime	nt with the minimum	n number of run	ns necessary to i	dentify			10
		these factors	and analyze the data	f each factor					

		on the reaction yield.			
		Run Factor A Factor B Factor C Factor D Reaction Yield			
		1 +1 -1 +1 -1 85			
		2 -1 +1 +1 -1 78			
		3 +1 +1 -1 -1 92			
		4 -1 -1 -1 +1 79			
		5 +1 -1 -1 +1 88			
		Module-5			
9	a.	Conduct a study to investigate the sampling distribution of the mean height			
		of students in a school. Collect height data from a random sample of			
		students and analyze the properties of the sampling distribution, including			
		its mean, variance, and shape. Interpret the findings to understand the	CO5	L3	10
		implications for making inferences about the population mean height based			
		on sample means.			
		Height Data for 5 Students (in inches): 67, 68, 70, 72, 65			
	b.	Design a hypothesis test to investigate whether a new fertilizer			
		significantly increases the growth rate of a specific plant species compared			
		to the standard fertilizer. Develop a controlled experiment where one group			
		of plants is treated with the new fertilizer and another group with the			
		standard fertilizer. Measure and analyze the growth rates of the plants over			
		a defined period to determine if there is a statistically significant difference	COF	та	10
		between the two treatments.	005	L4	10
		Sample Growin Rate (cm)			
		$1 \qquad 14$			
		$\begin{array}{ccc} 2 & 13 \\ 2 & 12 \end{array}$			
		$\begin{array}{ccc} 5 & 15 \\ 4 & 16 \end{array}$			
		5 12			
		Or			
10	a.	Design an experiment to investigate whether there is a significant			
		association between flower color and genotype in a population of a			
		particular plant species. Collect data on the flower color and genotype of a			
		sample of plants from the population, and analyze the data using a chi-			
		squared test to determine if there is a statistically significant relationship			
		between the two variables	COS	т 4	10
		Plant Flower Color Genotype	COS	L4	10
		1 Red Homozygous			
		2 Red Heterozygous			
		3 Blue Homozygous			
		4 Red Heterozygous			
		5 Blue Heterozygous			
	b.	A research team is investigating the effects of a new drug on the growth			
		rate of a particular type of bacteria. They conduct an experiment where			
		they treat one group of bacterial cultures with the new drug and another			
		group with a placebo. After a week of growth, they measure the population	~~~		10
		densities (in cells per unit volume) of both groups. The data obtained are as	CO5	L3	10
		IOIIOWS:			
		Now Drug Group: 12, 14, 15, 17, 16, 12, 14			
		New Drug Group: 12, 14, 13, 17, 10, 13, 14 Placebo Group: 0, 10, 11, 8, 12			
		riacebo Group: 9, 10, 11, 8, 12			

BBT402

Perform a Wilcoxon-Mann-Whitney Test to determine if there is a significant difference in the population densities between the two groups.		
Use a significance level of $\alpha = 0.05$. State your null and alternative hypotheses, calculate the test statistic, and make a conclusion based on the		
test results.		