BBT405A Model Question Paper-1/2 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Biochemical Thermodynamics

TIME: 03 Hours

Max. Marks: 100

01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. Note: 02. 03.

		Module -1	*Bloom's Taxonomy Level	Mar ks
Q. 01	a	fine First law , Zeroth law , Second law of Thermodynamics.	L1	10
	b	Explain with suitable examples : i) Intensive and Extensive property ii)Closed and Open system iii)Reversible and Irreversible processes iv)Heat engine and Heat pump	L2	10
		OD		
Q. 02	a	OR Derive First law of Thermodynamics for Flow process.	L2	10
	b	Explain P – V diagram of Carnot cycle and explain Carnot principle.	L2	10
		Module-2		
Q. 03	a	Explain PVT behaviour or pure fluids.	L2	10
	b	Derive the equation to calculate the workdone in an adiabatic process from fundamental	L3	10
		OR		
Q. 04	а	Explain any 2 equations of state for real gases	L2	10
	b	Using Hess's law, calculate the heat of formation of methane gas from the following heat of combustion data. i) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell); \Delta H^0 = -890.94 \text{ kJ}_{298}$	L3	10
		i) $C(s) + O_2(g) → CO_2(g) + 2H_2O(0)$, ΔH ⁰ = -393.78kJ. ₂₉₈ H ₂ (g) + ½ O ₂ (g) → H ₂ O(ℓ) ; ΔH ⁰ = -286.03 kJ. ²⁹⁸		
0		Module-3	1.2	10
Q. 05	а	Differentiate between Reference properties , Energy properties and Derived properties.	L2	10
	b		L3	10

BBT405A

				-
		Prove that $Cp - Cv = R$		
	1	OR		10
Q.	а		L1	10
06		. Define Fugacity and Fugacity co-efficient. Give the expression for effect of		
		temperature and pressure on fugacity.		
	b		L3	10
		Derive an expression for the fugacity co-efficient of a gas obeying the		
		equation of state $P(V-b) = RT$ and estimate the fugacity of ammonia at 10		
		bar and 298 K , given that $b = 3.707 \times 10^{-5} \text{ m}^3/\text{mol}.$		
	<u> </u>	Module-4		1.0
Q.	а		L3	10
07		Derive Gibb's Duhem equation		
				10
	b		L1	10
		Define Chemical potential. Explain the effect of temperature and pressure		
		on chemical potential.		
0		OR	L2	10
Q. 08	а	Explain : i) Lewis Randall rule ii) Raoult's law iii) Henry's law	L2	10
08	1	iv) Azeotropes		10
	b			10
		Explain Consistency test for VLE data using slope of $\ell_n v$ curves.		
		Module-5		
Q.	a	Discuss Heterogeneou reaction	L2	10
Q. 09	u	equilibrium for	122	10
07		i) Reaction in solution ii) Equilibrium involving pure solids and liquids.		
	b			10
		Explain Le Chatelier's principle.		10
	+			
	1	OR		
Q.	a		L3	10
10		A gas mixture containing 3 mol CO ₂ , 5 mol H ₂ and 1 mol H ₂ O is undergoing		
		the following reactions.		
		$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$		
		$CO_2 + H_2 \rightarrow CO + H_2O$		
		Develop expressions for the mole fractions of the species in terms of the extent of		
		reaction		
	b	Show that $\Delta g^0 = -RT \ell n K$.	L3	10
	1			
				i

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.