Model Question Paper-I with effect from 2023-24 (CBCS Scheme)

USN

Third Semester B.E. Degree Examination Data Structures and Applications

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	Define data structures. With a neat diagram, explain the classification of data structures with examples.	L2	5
	b	What do you mean by pattern matching? Outline the Knuth Morris Pratt (KMP) algorithm and illustrate it to find the occurrences of the following pattern. P: ABCDABD S: ABC ABCDAB ABCDABCDABDE	L3	8
	c	Write a program in C to implement push, pop and display operations for stacks using arrays.	L3	7
OR				
Q. 02	a	Explain in brief the different functions of dynamic memory allocation.	L2	5
	b	Write functions in C for the following operations without using built-in functions i) Compare two strings. ii) Concatenate two strings. iii) Reverse a string	L3	8
	c	Write a function to evaluate the postfix expression. Illustrate the same for the given postfix expression: $\mathrm{ABC}-\mathrm{D}^{*}+\mathrm{E} \$ \mathrm{~F}+$ and assume $\mathrm{A}=6, \mathrm{~B}=3, \mathrm{C}=2, \mathrm{D}=5, \mathrm{E}=1$ and $\mathrm{F}=7$.	L3	7
Module-2				
Q. 03	a	Develop a C program to implement insertion, deletion and display operations on Linear queue.	L3	10
	b	Write a program in C to implement a stack of integers using a singly linked list.	L3	10
OR				
Q. 04	a	Write a C program to implement insertion, deletion and display operations on a circular queue.	L3	10
	b	Write the C function to add two polynomials. Show the linked representation of the below two polynomials and their addition using a circular singly linked list $\begin{aligned} & \text { P1: } 5 \times 3+4 \times 2+7 x+3 \\ & \text { P2: } 6 \times 2+5 \end{aligned}$ Output: add the above two polynomials and represent them using the linked list.	L3	10

BCS304

BCS304

OR				
Q. 08	a	Define Binary Search tree. Construct a binary search tree (BST) for the following elements: $100,85,45,55,120,20,70,90,115,65,130,145$. Traverse using in-order, pre-order, and post-order traversal techniques. Write recursive C functions for the same.	L3	8
	b	Define Forest. Transform the given forest into a Binary tree and traverse using inorder, preorder and postorder traversal.	L2	6
	c	Define the Disjoint set. Consider the tree created by the weighted union function on the sequence of unions: union $(0,1)$, union $(2,3)$, union $(4,5)$, union(6,7), union $(0,2)$, union $(4,6)$, and union $(0,4)$. Process the simple find and collapsing find on eight finds and compare which find is efficient.	L2	6
Module-5				
Q. 09	a	What is chained hashing? Discuss its pros and cons. Construct the hash table to insert the keys: $7,24,18,52,36,54,11,23$ in a chained hash table of 9 memory locations. Use $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod \mathrm{m}$.	L3	10
	b	Define the leftist tree. Give its declaration in C. Check whether the given binary tree is a leftist tree or not. Explain your answer.	L2	5
	c	What is dynamic hashing? Explain the following techniques with examples: i) Dynamic hashing using directories ii) Directory less dynamic hashing	L2	5
OR				
Q. 10	a	What is a Priority queue? Demonstrate functions in C to implement the Max Priority queue with an example. i) Insert into the Max priority queue ii) Delete into the Max priority queue iii) Display Max priority queue	L3	10
	b	Define min Leftist tree. Meld the given min leftist trees.	L2	5
	c	Define hashing. Explain different hashing functions with examples. Discuss the properties of a good hash function.	L2	5

