Model Question Paper with effect from 2023-24 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination

Analysis and Designs of Algorithms

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	BL	Marks
Q.01	a	Define algorithm. Explain asymptotic notations Big Oh, Big Omega and Big Theta notations	L2	08
	b	Explain the general plan for analyzing the efficiency of a recursive algorithm. Suggest a recursive algorithm to find factorial of number. Derive its efficiency	L2	08
	c	If $t1(n) \in O(g1(n))$ and $t2(n) \in O(g2(n))$, then show that $t1(n) + t2(n) \in O(\max\{g1(n), g2(n)\})$.	L2	04
		OR		
Q.02	a	With neat diagram explain different steps in designing and analyzing an algorithm	L2	08
	b	Explain the general plan for analyzing the efficiency of a non-recursive algorithm. Suggest a non-recursive algorithm to find maximum element in the list of n numbers. Derive its efficiency	L2	08
	с	With the algorithm derive the worst case efficiency for Bubble sort	L2	04
		Module-2		
Q. 03	a	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity	L2	10
	b	Design an insertion sort algorithm and obtain its time complexity. Apply insertion sort on these elements. 25,75,40,10,20,	L3	10
		OR		
Q.04	a	Explain Strassen's matrix multiplication and derive its time complexity	L2	10
	b	Design an algorithm for quick sort algorithm. Apply quick sort on these elements. 25,75,40,10,20,05,15	L3	10
		Module-3		
Q. 05	a	Define AVL Trees. Explain its four rotation types	L2	10
	b	Construct bottom up heap for the list 2,9,7,6,5,8. Obtain its time complexity	L3	10
		OR		
Q. 06	а	Define heap. Explain the properties of heap along with its representation.	L2	10
	b	Design Horspools algorithm for string matching. Apply Horspools algorithm to find the pattern BARBER in the text: JIM_SAW_ME_IN_A_BARBERSHOP	L3	10
		Module-4		
Q. 07	a	Construct minimum cost spanning tree using Kruskals algorithm for the following graph. b - 1 - c	L3	10
		$\begin{array}{c} 3 \\ a \\ \hline a \\ \hline b \\ 6 \\ e \\ \hline e \\ \hline c \\ 8 \\ \hline \end{array} $		
	b	What are Huffman Trees? Construct the Huffman tree for the following data.CharacterABCDE-Probability0.50.350.50.10.40.2Encode DAD-CBE using Huffman Encoding.	L3	10

BCS401

BCS401

	-	OR			
Q. 08	a	Apply Dijkstra's algorithm to find single source shortest path for the given g considering S as the source vertex.	raph by	L3	10
	b	Define transitive closure of a graph. Apply Warshalls algorithm to compute the closure of a directed graph $a \ b \ c \ d$ $a \ b \ c \ d$ $a \ b \ c \ d$ $b \ 0 \ 0 \ 0 \ 1$ $c \ 0 \ 0 \ 0 \ 0$ $d \ 1 \ 0 \ 1$ $d \ 1 \ 0 \ 0$	ransitive	L3	10
		Module-5			
Q. 09	a	Explain the following with examples		L2	10
Q. 09	a	 i) P problem ii) NP Problem iii) NP- Complete problem iv) NP - Hard Problems 		L2	10
	b	What is backtracking? Apply backtracking to solve the below instance of sur	n of subset	L3	10
		problem $S = \{5, 10, 12, 13, 15, 18\} d = 30$			
		OR			
Q. 10	a	Illustrate N queen's problem using backtracking to solve 4-Queens problem		L2	10
	b	Using Branch and Bound technique solve the below instance of knapsack pro-	oblem.	L3	10
		Item Weight Value			
		1 2 12			
		2 1 10			
		3 3 20			
		4 2 5			
		Capacity 5			