Model Question Paper Set - 1 with effect from 2022 (CBCS Scheme)

USN \square
Fourth Semester B.E Degree Examination

DISCRETE MATHEMATICAL STRUCTURES (BCS405A)

TIME: 03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q. 1	a	Show that the compound proposition $[(p \leftrightarrow q) \wedge(q \leftrightarrow r) \wedge(r \leftrightarrow p)] \Leftrightarrow[(p \rightarrow q) \wedge(q \rightarrow r) \wedge(r \rightarrow p)]$ for primitive statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ is logically equivalence.	6	L2	CO1
	b	Establish the validity of the following argument using the Rules of Inference: $\{p \wedge(p \rightarrow q) \wedge(s \vee r) \wedge(r \rightarrow \sim q)\} \rightarrow(s \vee t)$.	7	L2	C01
	c	For the universe of all integers, let $\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}), \mathrm{r}(\mathrm{x}), \mathrm{s}(\mathrm{x})$ and $\mathrm{t}(\mathrm{x})$ denote the following open statements: $\mathrm{p}(\mathrm{x}): \mathrm{x}>0, \mathrm{q}(\mathrm{x}): \mathrm{x}$ is even, $\mathrm{r}(\mathrm{x}): \mathrm{x}$ is a perfect square, $\mathrm{s}(\mathrm{x}): \mathrm{x}$ is divisible by $3, \mathrm{t}(\mathrm{x}): \mathrm{x}$ is divisible by 7 . Write the following statements in symbolic form: i) At least one integer is even. ii) There exists a positive integer that is even. iii) If x is even, then x is not divisible by 3 . iv) No even integer is divisible by 7 . v) There exists even integer divisible by 3 .	7	L1	CO1
OR					
Q. 2	a	Define a tautology. Prove that, for any propositions $\mathrm{p}, \mathrm{q}, \mathrm{r}$ the compound propositions, $\{(p \rightarrow q) \wedge(q \rightarrow r)\} \rightarrow\{(p \rightarrow r)\}$ is tautology.	6	L2	CO1
	b	Prove the following using laws of logic: $p \rightarrow(q \rightarrow r) \Leftrightarrow(p \wedge q) \rightarrow r$.	7	L2	C01
	c	Give i) direct proof ii) indirect proof iii) proof by contradiction for the following statement: "if n is an odd integer then $\mathrm{n}+9$ is an even integer".	7	L3	CO1
Module - 2					
Q. 3	a	Prove that $1^{2}+3^{2}+5^{2}+\cdots .+(2 n-1)^{2}=\frac{n(2 n+1)(2 n-1)}{3} \quad$ by Mathematical Induction.	6	L2	CO2
	b	Let $a_{0}=1, a_{1}=2, a_{2}=3$ and $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$ for $n \geq 3$. Prove that $a_{n} \leq 3^{n} \forall n \in z^{+}$.	7	L2	CO2
	c	Find the number of ways of arrangement of the letters of the word 'TALLAHASSEE' which have no adjacent A's.	7	L2	CO2
OR					
Q. 4	a	Determine the coefficient of $x y z^{2}$ in the expansion of $(2 x-y-z)^{4}$.	6	L2	CO2
	b	In how many ways one can distribute 8 identical marbles in 4 distinct containers so that i) no container is empty ii) the fourth container has an odd number of marbles in it.	7	L2	CO2
	c	How many positive integers n can we form using the digits $3,4,4,5,5,6,7$ if we want n to exceed $5,000,000$?	7	L2	CO2
Modulle - 3					
Q. 5	a	Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by, $f(x)=\left\{\begin{array}{l}3 x-5 \text { if } x>0 \\ 1-3 x \text { if } x \leq 0\end{array}\right.$. Find $f^{-1}(0), f^{-1}(1), f^{-1}(-1), f^{-1}(3), f^{-1}(6), f^{-1}([-6,5])$ and $f^{-1}([-5,5])$	6	L2	CO3

	b	State Pigeon hole principle. Prove that in any set of 29 persons; at least 5 persons have been born on the same day of the week.	7	L2	CO3
	c	Let $A=\{1,2,3,4,6\}$ and ' R ' be a relation on ' A ' defined by aRb if and only if "a is multiple of b " represent the relation ' R ' as a matrix, draw the diagraph and relation R .	7	L2	CO3
OR					
Q. 6	a	If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ are three functions, then Prove that $\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})=(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}$.	6	L2	CO3
	b	Show that if $\mathrm{n}+1$ numbers are chosen from 1 to 2 n then at least one pair add to $2 \mathrm{n}+1$.	7	L2	CO3
	c	Draw the Hasse diagram representing the positive divisors of 72.	7	L2	CO 3
Module - 4					
Q. 7	a	In how many ways the 26 letters of English alphabet are permuted so that none of the pattern's CAR, DOG, PUN or BYTE occurs?	6	L2	CO4
	b	Define Derangement. In how many ways can each of 10 people select a left glove and a right glove out of a total of 10 pairs of gloves so that no person selects a matching pair of gloves?	7	L2	CO 4
	c	Solve the recurrence relation: $C_{n}=3 C_{n-1}-2 C_{n-2}$, for $n \geq$ 2 , given $C_{1}=5, C_{2}=3$.	7	L3	CO4
OR					
Q. 8	a	In how many ways one can arrange the letters of the word CORRESPONDENTS so that there are i) exactly 2 pairs of consecutive identical letters? ii) at least 3 pairs of consecutive identical letters? iii) no pair of consecutive identical letters?	6	L2	CO 4
	b	Find the rook polynomial for the chess board as shown in the figure	7	L2	CO 4
	c	Solve the recurrence relation $a_{n+2}-3 a_{n+1}+2 a_{n}=0, a_{0}=1, a_{1}=6$.	7	L3	CO 4
Module - 5					
Q. 9	a	If H, K are subgroups of a group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G.	6	L2	CO5
	b	Define Klein 4 group. Verify $A=\{1,3,5,7\}$ is a klein 4 group.	7	L2	CO5
	c	State and prove Lagrange's Theorem.	7	L2	CO5
OR					
Q. 10	a	Show that i) the identity of G is unique. ii) the inverse of each element of G is Unique.	6	L3	CO5
	b	Show that (A, \cdot) is an abelian group where $A=\{a \in Q \mid a \neq-1\}$ and for any $a, b \in A, a \cdot b=a+b+a b$.	7	L3	CO5
	c	Let $G=S_{4}, \quad$ for $\quad \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$, find the subgroup $H=$ $\langle\alpha\rangle$. Determine the left cosets of H in G.	7	L3	CO5

Model Question Paper Set - 2 with effect from 2022 (CBCS Scheme)

USN \square

Fourth Semester B.E Degree Examination

DISCRETE MATHEMATICAL STRUCTURES (BCS405A)

TIME:03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. M: Marks, L: RBT levels, C: Course outcomes.

	Module - 1		M	L	C
Q. 1	a	Define tautology. Show that $[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r$ is a tautology by constructing the truth table.	6	L1	CO1
	b	Prove the following using the laws of logic $[\neg p \wedge(\neg q \wedge r)] \vee[(q \wedge r) \vee(p \wedge r)] \Leftrightarrow r$.	7	L2	CO1
	c	For any two odd integers m and n, show that (i) $m+n$ is even (ii) $m n$ is odd.	7	L2	C01
OR					
Q. 2	a	Define i) an open statement ii) Quantifiers	6	L2	CO1
	b	Write the following argument in symbolic form and then establish the validity If A gets the Supervisor's position and works hard, then he will get a raise. If he gets a raise, then he will buy a car. He has not purchased a car. Therefore he did not get the Supervisor's position or he did not work hard.	7	L1	CO1
	c	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement. a) $\ni x \ni y[x y=1]$ b) $\ni x \forall y[x y=1]$ c) $\forall x \ni y[x y=1]$ d) $\ni x \ni y[(2 x+y=5) \wedge(x-3 y=-8)]$ e) $\ni x \ni y[(3 x-y=$ 7) $\wedge(2 x+4 y=3)]$	7	L2	CO1
Modulle - 2					
Q. 3	a	Define the well ordering principle. By Mathematical Induction, Prove that $(\boldsymbol{n}!) \geq \mathbf{2 n}-\mathbf{1}$ for all integers $n \geq \mathbf{1}$.	6	L2	CO2
	b	Prove that every positive integer $n \geq 24$ can be written as a sum of 5 's and/or 7's.	7	L3	CO2
	c	How many positive integers n, can we form using the digits $3,4,4,5,5,6,7$, if we want n to exceed 5,000,000.	7	L1	CO2
OR					
Q. 4	a	By Mathematical Induction Prove that $1.3+2.4+\cdots \ldots \ldots+n(n+2)=\frac{n(n+1)(2 n+7)}{6} .$	6	L1	CO2
	b	Find the number of permutations of the letters of the word MASSASAUGA. In how many of these all four A 's are together? How many of them begin with S ?	7	L2	CO 2
	c	i) Obtain the Coefficient of $a^{5} b^{2}$ in the expansion of $(2 a-3 b)^{7}$ ii) Using the Binomial theorem find the coefficient of $x^{5} y^{2}$ in	7	L1	CO2

		the expansion of $(x+y)^{7}$.			
Module - 3					
Q. 5	a	State Pigeon -hole principle. Prove that if any number from1 to 8 are chosen then two of them will have their sum as 9 .	6	L1	CO3
	b	Let $f: R \rightarrow R$ be defined by,$f(x)=\left\{\begin{array}{l}3 x-5, \text { if } x>0 \\ 1-3 x, \\ \text { if } x \leq 0\end{array}\right\}$ \quad find, $f^{-1}([-6,5])$ and $f^{-1}([-5,5])$.	7	L1	CO3
	c	Let $A=B=C=R$, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by $f(a)=2 a+1, \quad g(b)=\frac{1}{3} b, \forall a \in A, \forall b \in B .$ Compute $g \circ f$ and show that $g \circ f$ is invertible. What is $(g \circ f)^{-1}$?	7	L2	CO 3
OR					
Q. 6	a	Let f and g be functions from R to R defined by $f(x)=a x+b$ and $g(x)=1-x+x^{2}$, If $(g \circ f)(x)=9 x^{2}-9 x+3$ determine a and b.	6	L3	CO3
	b	Draw the Hasse (POSET) diagram which represents positive divisors of 36 .	7	L2	CO 3
	c	Let $A=\{1,2,3,4,6\}$ and R be a relation on A defined by $a R b$ if and only if " a is a multiple of b ". Write down the relation R, relation matrix $M(R)$ And draw its diagraph. List out its in degree and out degree.	7	L2	CO3
Module - 4					
Q. 7	a	Determine the number of positive integers n such that $1 \leq n \leq 100$ and n is not divisible by 2,3 , or 5	6	L2	CO4
	b	In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?	7	L2	CO 4
	c	Solve the recurrence relation $a_{n}=n a_{n-1}$ where $\mathrm{n} \geq 1$ and $a_{0}=1$.	7	L2	CO 4
OR					
Q. 8	a	In how many ways 5 number of a's, 4 number of b's and 3 number of c's can be arranged so that all the identical letters are not in a single block?	6	L3	CO4
	b	Five teachers $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$ are to be made class teachers for five classes, $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, one teacher for each class. T_{1} and T_{2} do not wish to become the class teachers for C_{1} or C_{2}, T_{3} and T_{4} for C_{4} or C_{5}, and T_{5} for C_{3} or C_{4} or C_{5}.In how many ways can the teachers be assigned the work (without displeasing any teacher	7	L2	CO 4
	c	Solve the recurrence relation $F_{n+2}=F_{n+1}+F_{n}$ where $\mathrm{n} \geq 0$ and $F_{0}=0, F_{1}=$ 1.	7	L2	CO 4
Module - 5					
Q. 9	a	Define group. Show that fourth roots of unity is an abelian group.	6	L2	CO5
	b	If G be a set of all non-zero real numbers and let $\mathrm{a}^{*} \mathrm{~b}=\mathrm{ab} / 2$ then show that ($\mathrm{G}, *$) is an abelian group.	7	L2	CO5
	c	Define Klein 4-group. And if $\mathrm{A}=\{\mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ then show that this is a Klein -4 group	7	L1	CO5
OR					
Q. 10	a	Define Cyclic group and show that ($\mathrm{G}, 8$) whose multiplication table is as given below is Cyclic	6	L2	CO5

