Model Question Paper-II with effect from 2022(CBCS Scheme)
USN \square

Fourth Semester B.E Degree Examination GRAPH THEORY (BCS405B)

TIME:03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. VTU Formula Hand Book is Permitted
3. M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q. 1	a	Consider the following graph G. (i) What type of a graph is G ? (ii) Find the pendant vertices in G. (iii) How many components are there in G ? (iv) Find the minimum degree, $\delta(G)$ in G. (v) Find the average degree, $d(G)$ of the graph G. Draw two vertex disjoint subgraphs of G.	6	L2	CO1
	b	Show that the number of vertices of odd degree in a graph is always even.	7	L3	C01
	c	Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.	7	L3	CO1
OR					
Q. 2	a	Distinguish between Complete graph and Complete Bipartite graph.	6	L2	CO1
	b	Verify whether the following graphs are isomorphic or not. G_{1} G_{2}	7	L2	CO1
	c	Show that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.	7	L3	CO1
Module - 2					
Q. 3	a	By specifying the walk, draw two Euler graphs and an Unicursal graph.	6	L2	CO 2
	b	If all the vertices in a connected graph G are of even degree, then show that G is Eulerian.	7	L3	CO 2
	c	Define Hamiltonian cycle. How many edge-disjoint Hamiltonian cycles exist in a complete graph with 5 vertices? Draw the graph to show and specify the cycle.	7	L1	CO2

OR					
Q. 4	a	Define Hamiltonian graph. By specifying the walk, draw a graph that has a Hamiltonian path but does not have a Hamiltonian circuit.	6	L1	CO2
	b	Show that a connected graph G has an Eulerian trail if and only if there are exactly two vertices of odd degree in G.	7	L3	CO2
	c	(i) Prove that in any digraph the sum of the in-degrees of all vertices is equal to the sum of their out-degrees; and this sum is equal to the number of edges in the digraph. (ii) Draw a complete symmetric digraph and a complete asymmetric digraph with 4 vertices.	7	L3	CO2
Module - 3					
Q. 5	a	(i) Show that the number of vertices in a binary tree is always odd. (ii) Find the number of pendant vertices in a binary tree of order n.	6	L3	CO3
	b	Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices.	7	L3	CO3
	c	Show that a tree with n vertices has $n-1$ edges.	7	L3	CO3
OR					
Q. 6	a	(i) Show that every connected graph contains a spanning tree. (ii) Find the number of tree branches and chords in the following graph with 7 vertices and 14 edges.	6	L3	CO3
	b	Define Fundamental Circuit. If G is a graph with n vertices and q edges, then find the number of fundamental circuits in the graph.	7	L1	CO3
	c	Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and the edge connectivity cannot exceed the degree of the vertex with the smallest degree in G.	7	L3	CO3
Module - 4					
Q. 7	a	(i) Define planar and non-planar graphs. (ii) State Kuratowski's theorem. Draw Kuratowski's two graphs.	6	L1	CO4
	b	Show that a connected planar graph with n vertices and e edges has $e-n+2$ regions.	7	L3	CO4
	c	1. Draw the geometric dual of the graph G . 2. Write down the adjacency matrix for the graph G.	7	L2	CO4
OR					
Q. 8	a	If G is a simple planar graph with at least three vertices, then show that (i) $e \leq 3 n-6$. and (ii) $e \leq 2 n-4$; if G is triangle free.	6	L3	CO4
	b	(i) Show that Petersen graph is non-planar. (ii) Let G be a planar graph. Then prove that it contains a vertex of degree at most 5 .	7	L3	CO4
	c	Write down the Path matrix and Circuit matrix for the given graph.	7	L2	CO4

Module - 5					
Q. 9	a	Prove that every tree with two or more vertices is 2-chromatic.	6	L3	CO5
	b	Define chromatic number of a graph. Find the chromatic polynomial and chromatic number for the given graph.	7	L1	CO5
	c	Define Matching and complete matching. Obtain two complete matching from the given graph.	7	L1	CO 5
OR					
Q. 10	a	Prove that an n-vertex graph is a tree if and only if its chromatic polynomial is $P_{n}(\lambda)=\lambda(\lambda-1)^{n-1}$.	6	L3	CO5
	b	Define Covering and minimal covering of a graph. Obtain two minimal coverings from the given graph.	7	L1	CO5
	c	State and prove Five color theorem.	7	L2	CO5

