Model Question Paper-II with effect from 2022(CBCS Scheme)

TICNI					
UDIN					

Fourth Semester B.E Degree Examination GRAPH THEORY (BCS405B)

TIME:03Hours Max.Marks:100

Note:

- 1. Answer any ${f FIVE}$ full questions, choosing at least ${f ONE}$ question from each ${f MODULE}$
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: RBT levels, C: Course outcomes.

	Module – 1	M	L	C
Q.1	Consider the following graph G .	6	L2	CO1
	(i) What type of a graph is G?			
	(ii) Find the pendant vertices in G .			
	(iii) How many components are there in <i>G</i> ?			
	(iv) Find the minimum degree, $\delta(G)$ in G .			
	(v) Find the average degree, $d(G)$ of the graph G .			
	Draw two vertex disjoint subgraphs of G .			
	v ₁			
	• • •			
	V ₃ V ₆ V ₃			
	G Character that the graph of providing of add dographic always area	7	T 2	CO1
	Show that the number of vertices of odd degree in a graph is always even.	7	L3	CO1
	$oxed{c}$ Show that the maximum number of edges in a simple graph with n vertices	7	L3	CO1
	is $\frac{n(n-1)}{2}$.			
	2			
	OR			
Q.2	a Distinguish between Complete graph and Complete Bipartite graph.	6	L2	CO1
	b Verify whether the following graphs are isomorphic or not.	7	L2	CO1
	G_1 G_2			
	Show that a simple graph with n vertices and k components can have at most $(n-k)(n-k+1)$.	7	L3	CO1
	$\frac{(n-k)(n-k+1)}{2} $ edges.			
	$\mathbf{Module} - 2$			
Q.3	a By specifying the walk, draw two Euler graphs and an Unicursal graph.	6	L2	CO2
	If all the vertices in a connected graph G are of even degree, then show that G	7	1.2	CO2
	b is Eulerian.	7	L3 L1	CO2
	Define Hamiltonian cycle. How many edge-disjoint Hamiltonian cycles exist			CO ₂
	in a complete graph with 5 vertices? Draw the graph to show and specify the cycle.			
<u> </u>	Cycle.	<u> </u>	<u> </u>	

	O.D.			
Q.4	Define Hamiltonian graph. By specifying the walk, draw a graph that has a Hamiltonian path but does not have a Hamiltonian circuit.	6	L1	CO2
	Show that a connected graph <i>G</i> has an Eulerian trail if and only if there are exactly two vertices of odd degree in <i>G</i> .	7	L3	CO2
	(i) Prove that in any digraph the sum of the in-degrees of all vertices is equal to the sum of their out-degrees; and this sum is equal to the number of edges in the digraph. (ii) Draw a complete symmetric digraph and a complete asymmetric digraph with 4 vertices.	7	L3	CO2
	Module – 3			1
Q.5	(i) Show that the number of vertices in a binary tree is always odd. (ii) Find the number of pendant vertices in a binary tree of order n.	6	L3	CO3
	b Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices.	7	L3	CO3
	Show that a tree with n vertices has $n-1$ edges.	7	L3	CO3
	OR			
Q.6	(i) Show that every connected graph contains a spanning tree. (ii) Find the number of tree branches and chords in the following graph with 7 vertices and 14 edges.	6	L3	CO3
	Define Fundamental Circuit. If G is a graph with n vertices and q edges, then find the number of fundamental circuits in the graph.	7	L1	CO3
	Show that for any graph G , the vertex connectivity cannot exceed the edge connectivity and the edge connectivity cannot exceed the degree of the vertex with the smallest degree in G .	7	L3	CO3
	Module – 4			
Q.7	(i) Define planar and non-planar graphs. (ii) State Kuratowski's theorem. Draw Kuratowski's two graphs.	6	L1	CO4
	Show that a connected planar graph with n vertices and e edges has $e - n + 2$ regions.	7	L3	CO4
	 Draw the geometric dual of the graph G. Write down the adjacency matrix for the graph G. 	7	L2	CO4
	G			
	OR		•	•
Q.8	If G is a simple planar graph with at least three vertices, then show that (i) $e \le 3n - 6$. and (ii) $e \le 2n - 4$; if G is triangle free.	6	L3	CO4
	b (i) Show that Petersen graph is non-planar. (ii) Let G be a planar graph. Then prove that it contains a vertex of degree at most 5.	7	L3	CO4
	Write down the Path matrix and Circuit matrix for the given graph.	7	L2	CO4
	· ·		•	•

	v ₁ v ₅ v ₆							
	Module – 5							
Q.9	a Prove that every tree with two or more vertices is 2-chromatic.	6	L3	CO5				
	Define chromatic number of a graph. Find the chromatic polynomial and chromatic number for the given graph. W1 W2 W3 Define Matching and complete matching. Obtain two complete matching from	7	L1	CO5				
	the given graph.	,		C03				
	OR							
Q.10	Prove that an n -vertex graph is a tree if and only if its chromatic polynomial is $P_n(\lambda) = \lambda(\lambda - 1)^{n-1}$.	6	L3	CO5				
	Define Covering and minimal covering of a graph. Obtain two minimal coverings from the given graph.	7	L1	CO5				
	C State and prove Five color theorem.	7	L2	CO5				