Model Question Paper - I with effect from 2022(CBCS Scheme)

USN

Fourth Semester B.E Degree Examination

GRAPH THEORY (BCS405B)

TIME:03Hours

Max.Marks:100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**
- 2. M: Marks, L: RBT levels, C: Course outcomes.

	Module - 1	Μ	L	С
Q.1	a Define i) Walk ii) Path iii) Circuit with an example for each	6	L1	CO1
	b If a connected graph G is decomposed into two subgraphs g_1 and g_2 , then prove that there must be at least one vector common between g_1 and g_2 .	7	L3	CO1
	c Determine whether the following graphs are isomorphic or not.	7	L3	CO1
	OR	-		
Q.2	a Define i) Isomorphism ii) Subgraph iii) Pendent vertex with an example for each.	6	L1	CO1
	b Prove that the number of vertices of odd degree in a graph is always even.	7	L3	CO1
	c Explain any Five applications of graphs.	7	L3	CO1
	Module – 2			
Q.3	a Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree.	6	L3	CO2
	b Define Hamiltonian circuit and Hamiltonian path. Give an example for each.b Also, draw a graph that has a Hamiltonian path but not a Hamiltonian circuit.	7	L3	CO2
	c Discuss about any four types of digraphs with suitable examples.	7	L3	CO2
	OR			
Q.4	a In a complete graph with n vertices, prove that there are $\frac{n-1}{2}$ edge-disjoint Hamiltonian circuits, if n is an odd number ≥ 3	6	L3	CO2
	b The weights in the graph given below represent the distances between cities. A salesman based at city 'a' would like to visit every other city exactly once and	7	L3	CO2
	return to the home city, keeping his total travel to a minimum. What route			
	should he take and how far will he travel?			

r		1	1	· · · ·
	c Define Binary relation. Represent the relation R defined on $A = \{2, 3, 4, 6\}$ by	7	1.2	<u> </u>
	the phrase 'is a factor of' in a digraph.	/	L3	CO2
	Module – 3			
Q.5	For any Spanning tree of a connected graph with n vertices and e edges, prove that there are $n - 1$ tree branches and $e - n + 1$ chords. For the following graph, find two spanning trees and hence show that an edge that is a branch of one spanning tree can be a chord with respect to another spanning tree of same graph.	6	L3	CO3
	v_{5} v_{6} v_{2} v_{2} v_{3} v_{3} v_{5} v_{4} v_{4} v_{4}			
	b Define vertex connectivity and edge connectivity. Give the relation between them.	7	L3	CO3
	C Prove that every circuit has even number of edges in common with a cut-set.	7	L3	CO3
	OR			
Q.6	a Prove that there are at least two pendent vertices in a tree with two or more vertices.	6	L3	CO3
	b Prove that the distance between any two spanning trees is a metric. Find two different minimum spanning trees of a graph with $V = \{1, 2, 3, 4\}$ described by $\varphi = \begin{bmatrix} a & b & c & d & e & f \\ \{1, 2\} & \{1, 2\} & \{1, 4\} & \{2, 3\} & \{3, 4\} & \{3, 4\} \end{bmatrix}$ It has weights on its edges given by $\lambda = \begin{bmatrix} a & b & c & d & e & f \\ 3 & 2 & 1 & 2 & 4 & 2 \end{bmatrix}$		L3	CO3
	Prove that with respect to the given spanning tree T, a branch b ₁ that determines a fundamental cut-set S is contained in every fundamental circuit associated with the chords in S and in no other.	7	L3	CO3
	Module – 4			
Q.7	State and prove Euler's formula that gives the number of regions in any planar graph.	6	L3	CO4
	b Describe the steps to find adjacency matrix and incidence matrix for a directed graph with a simple example.	7	L3	CO4
	C State Kuratowaki's Theorem and use it in order to prove the graph given below is non-planar.	7	L3	CO4
	7 6 4			
	OR			
Q.8	a Give two conditions for testing planarity of a given graph. Sketch a sample graph for planar graph and non-planar graph.	6	L3	CO4

	b	Draw the geometric dual of the following graph.	7	L3	CO4	
	C	Write the adjacency matrix and incidence matrix for the following	7	L3	CO4	
		graph.				
		Module – 5				
Q.9	a	Define Chromatic number. Prove that a graph with at least one edge is 2- abromatic if and only if it has no circuits of odd length	6	L3	CO5	
	b	chromatic if and only if it has no circuits of odd length. Define chromatic polynomial and write the chromatic polynomial of a graph	7	L3	CO5	
	U/	with n vertices.			200	
	c	State and prove Four-color Theorem.	7	L3	CO5	
OR						
Q.10	a	Define i) Complete Matching ii) Minimal Covering. Give one example for each.	6	L1	CO5	
	b	State and prove Five-color Theorem.	7	L3	CO5	
	c	Write a note on Greedy coloring algorithm.	7	L3	CO5	

Model Question Paper-II with effect from 2022(CBCS Scheme)

USN

Fourth Semester B.E Degree Examination

GRAPH THEORY (BCS405B)

TIME:03Hours

Max.Marks:100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**
- 2. M: Marks, L: RBT levels, C: Course outcomes.

	Module – 1	Μ	L	С
Q.1	a Consider the following graph G.	6	L2	CO1
_	(i) What type of a graph is G?			
	(ii) Find the pendant vertices in G .			
	(iii) How many components are there in G ?			
	(iv) Find the minimum degree, $\delta(G)$ in G.			
	(v) Find the average degree, $d(G)$ of the graph G.			
	Draw two vertex disjoint subgraphs of G .			
	v_1 v_5 v_6 v_4			
	b Show that the number of vertices of odd degree in a graph is always even.	7	L3	CO1
	c Show that the maximum number of edges in a simple graph with n vertices	7	L3	CO 1
	is $\frac{n(n-1)}{2}$.			
	OR			
Q.2	a Distinguish between Complete graph and Complete Bipartite graph.	6	L2	CO1
	b Verify whether the following graphs are isomorphic or not.	7	L2	CO1
	C Show that a simple graph with <i>n</i> vertices and <i>k</i> components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.	7	L3	C01
	Module – 2			
Q.3	a By specifying the walk, draw two Euler graphs and an Unicursal graph.	6	L2	CO2
	b If all the vertices in a connected graph G are of even degree, then show that G is Eulerian.	7	L3	CO2
	C Define Hamiltonian cycle. How many edge-disjoint Hamiltonian cycles exist in a complete graph with 5 vertices? Draw the graph to show and specify the cycle.	7	L1	CO2
	OR			

0.4		Define Hamiltonian graph. By specifying the walk, draw a graph that has a		Т 1	CO
Q.4	a	Hamiltonian path but does not have a Hamiltonian circuit.	6	L1	CO2
	b	Show that a connected graph G has an Eulerian trail if and only if there are	7	L3	CO2
		exactly two vertices of odd degree in <i>G</i>.(i) Prove that in any digraph the sum of the in-degrees of all	-		001
	С	vertices is equal to the sum of their out-degrees; and this sum is equal	7	L3	CO2
		to the number of edges in the digraph.			
		(ii) Draw a complete symmetric digraph and a complete asymmetric			
		digraph with 4 vertices.			
		Module – 3			
0 5		(i) Show that the number of vertices in a binary tree is always odd.	6	L3	CO3
Q.5	a	(ii) Find the number of pendant vertices in a binary tree of order <i>n</i> .			
	b	Prove that a connected graph G is a tree if and only if there is one and only one	7	L3	CO3
		path between every pair of vertices.	_	X 0	000
	С	Show that a tree with n vertices has $n - 1$ edges.	7	L3	CO3
	1	OR	r	1	1
Q.6	a	(i) Show that every connected graph contains a spanning tree.	6	L3	CO3
Q.0	a	(ii) Find the number of tree branches and chords in the following graph with 7 vertices and 14 edges.	Ŭ		
		\wedge			
	b	Define Fundamental Circuit. If G is a graph with n vertices and q edges, then	7	L1	CO3
	U	find the number of fundamental circuits in the graph.	'	1.11	000
		Show that for any graph G , the vertex connectivity cannot exceed the edge	7	L3	CO3
	С	connectivity and the edge connectivity cannot exceed the degree of the vertex	/	LJ	COS
		with the smallest degree in <i>G</i> .			
	1	Module – 4	r	1	1
0.7	9	(i) Define planar and non-planar graphs.	6	L1	CO4
2.1	a	(ii) State Kuratowski's theorem. Draw Kuratowski's two graphs.	0		001
	b	Show that a connected planar graph with <i>n</i> vertices and <i>e</i> edges has $e - n + 2$ regions	7	L3	CO4
		regions. 1. Draw the geometric dual of the graph G.			
	с	 Write down the adjacency matrix for the graph G. 	7	L2	CO4
		•			
		G			
OR					
Q.8	a	If G is a simple planar graph with at least three vertices, then show that (i) $e \le 3n-6$. and (ii) $e \le 2n-4$; if G is triangle free.	6	L3	CO4
-	b	(i) Show that Petersen graph is non-planar.	7	L3	CO4
	U	(i) Let G be a planar graph. Then prove that it contains a vertex of degree	,		
		at most 5.			
	С	Write down the Path matrix and Circuit matrix for the given graph.	7	L2	CO4

		Module – 5			
Q.9	a	Prove that every tree with two or more vertices is 2-chromatic.	6	L3	CO5
	b	Define chromatic number of a graph. Find the chromatic polynomial and chromatic number for the given graph. $w_1 \longrightarrow w_2 \longrightarrow w_3$	7	L1	CO5
	C	Define Matching and complete matching. Obtain two complete matching from the given graph.	7	L1	CO5
		OR			
Q.10	a	Prove that an <i>n</i> -vertex graph is a tree if and only if its chromatic polynomial is $P_n(\lambda) = \lambda(\lambda - 1)^{n-1}$.	6	L3	CO5
	b	Define Covering and minimal covering of a graph. Obtain two minimal coverings from the given graph.	7	L1	CO5
	c	State and prove Five color theorem.	7	L2	CO5