

Fourth Semester B.E Degree Examination
 OPTIMIZATION TECHNIQUES (BCS405C)

TIME:03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. VTU Formula Hand Book is Permitted
3. M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q. 1	a	Let $f\left(x_{1}, x_{2}\right)=e^{x_{1} x_{2}^{2}}$ where $x_{1}=t \cos t$ and $x_{2}=\operatorname{tsin} t$ find $\frac{d f}{d t}$.	7	L2	C01
	b	Obtain the gradient of scalar $\phi=4 x_{0}+2 x_{1}-3 x_{2}+x_{4}$ with respect to the matrix $\vec{x}=\left[\begin{array}{ll}x_{0} & x_{1} \\ x_{2} & x_{3}\end{array}\right]$.	6	L2	CO1
	c	Obtain the power series expansion of $f(x, y)=x^{2} y+3 y-2$ in terms of $(x-1)$ and $(y+2)$ up to second degree.	7	L3	C01
OR					
Q. 2	a	Discuss the gradient of vectors with respect to matrices.	7	L2	CO1
	b	If $\vec{x}, \vec{y} \in \mathbb{R}^{2}$ and $y_{1}=-2 x_{1}+x_{2}, y_{2}=x_{1}+x_{2}$. Show that the Jacobian determinant $\|\operatorname{det} \boldsymbol{J}\|=3$.	6	L3	CO1
	c	Find the second order Taylor's series approximation of the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+5 x_{1} e^{x_{2}}$ about the point $a=1, b=0$.	7	L3	CO1
Module - 2					
Q. 3	a	Draw a computation graph of the function: $f(x)=\sqrt{x^{2}+e^{x^{2}}}+\cos \left(x^{2}+e^{x^{2}}\right)$. Also find $\frac{\partial f}{\partial x}$ using automatic differentiation.	8	L3	CO2
	b	Obtain the gradient of quadratic cost.	6	L3	CO2
	c	Find the output at neuron 5 , if input vector $[0.7,0.3]$ using the activation function ReLU.	6	L3	CO2

Q. 9	a	Explain in brief 1. Adagrad optimization strategy 2. RMSprop	10	L2	CO5
	b	What is the difference between convex optimization and non-convex optimization	5	L2	CO5
	c	Describe the saddle point problem in machine learning	5	L2	CO5
OR					
Q. 10	a	Write a short notes on 1.Stochastic gradient descent with momentum 2.ADAM	10	L2	CO5
	b	What is the best optimization algorithm for machine learning	5	L2	$\mathrm{CO5}$
	c	Briefly explain the advantages of RMSprop over Adagrad	5	L2	$\mathrm{CO5}$

Model Question Paper-II with effect from 2022(CBCS Scheme)

USN

Fourth Semester B.E Degree Examination OPTIMIZATION TECHNIQUES (BCS405C)

TIME:03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. VTU Formula Hand Book is Permitted
3. M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q. 1	a	Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}$ where $x_{1}=\sin t$ and $x_{2}=\cos t$ find $\frac{d f}{d t}$.	7	L2	CO1
	b	Obtain the gradient of matrix $\vec{f}=\left[\begin{array}{cc}\sin \left(x_{0}+2 x_{1}\right) & 2 x_{1}+x_{3} \\ 2 x_{0}+x_{2} & \cos \left(2 x_{2}+x_{3}\right)\end{array}\right]$ with respect to the matrix $\vec{x}=\left[\begin{array}{ll}x_{0} & x_{1} \\ x_{2} & x_{3}\end{array}\right]$.	7	L3	CO1
	c	Obtain the partial derivatives for (i) $f(x, y)=\left(x+2 y^{3}\right)^{2}$ (ii) $f(x, y)=x^{2} y+x y^{3}$	6	L3	CO1
OR					
Q. 2	a	Discuss (i) Gradient of a matrix with respect to a vector. (ii) Gradient of a matrix with respect to a matrix.	10	L2	C01
	b	Find the Taylor's series expansion of the function $f(x, y)=x^{2}+2 x y+$ y^{3} at $\left(x_{0}, y_{0}\right)=(1,2)$ up to third degree.	10	L3	CO1
Module - 2					
Q. 3	a	Draw a computation graph of the function: $f(x)=\sqrt{x^{2}+e^{x^{2}}}+\cos \left(x^{2}+e^{x^{2}}\right)$. Also find $\frac{\partial f}{\partial x}$ using automatic differentiation.	8	L3	CO2
	b	Obtain the gradient of quadratic cost.	6	L3	CO2
	c	Find the output at neuron 5 , if input vector $[0.7,0.3]$ using the activation function ReLU.	6	L3	CO2

Q. 9	a	Explain in brief 1. Adagrad optimization strategy 2. RMSprop	10	L2	CO5
	b	What is the difference between convex optimization and non-convex optimization	5	L2	CO5
	c	Describe the saddle point problem in machine learning	5	L2	CO5
OR					
Q. 10	a	Write a short notes on 1.Stochastic gradient descent with momentum 2.ADAM	10	L2	CO5
	b	What is the best optimization algorithm for machine learning	5	L2	$\mathrm{CO5}$
	c	Briefly explain the advantages of RMSprop over Adagrad	5	L2	$\mathrm{CO5}$

