\square

Fourth Semester B.E Degree Examination
 LINEAR ALGEBRA (BCS405D)

TIME:03Hours

Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
2. M: Marks, L: RBT levels, C: Course outcomes.

	Module - 1		M	L	C
Q. 1	a	Show that set $V=\{a+b \sqrt{2} \mid a, b \in Q\}$, where Q is the set of all rational: field Q is a vector space, under usual addition and scalar multiplication.	6	L2	CO1
	b	Let $S=\{(1,-3,2),(2,4,1),(1,1,1)\}$ be a subset of $V_{3}(R)$. Show that the vector $(3,-7,6)$ is in $\mathrm{L}[\mathrm{S}]$.	7	L2	CO1
	c	Show that the vectors $(1,1,2,4),(2,-1,-5,2),(1,-1,-4,0)$ and $(2,1,1,6)$ are linearly dependent in R^{4} and extract a linearly independent subset. Also find the dimension and a basis of the subspace spanned by them.	7	L3	CO1
OR					
Q. 2	a	Prove that a non-empty subset W is a subspace of a vector space V over F, if and only if $c_{1} \alpha+c_{2} \beta \in W, \forall \alpha, \beta \in W, c_{1}, c_{2} \in F$. Show that the subset $W=\{(x, y, z) \mid x+y+z=0\}$ of the vector space $V_{3}(R)$ is a subspace of $V_{3}(R)$.	6	L2	CO1
	b	Verify the set $S=\{(1,2,1),(-1,1,0),(5,-1,2)\}$ is linearly dependent or not.	7	L2	CO1
	c	Find the basis and dimension of the subspace spanned by the subset $S=\left\{\left[\begin{array}{cc}1 & -5 \\ -4 & 2\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ -1 & 5\end{array}\right],\left[\begin{array}{cc}2 & -4 \\ -5 & 7\end{array}\right],\left[\begin{array}{cc}1 & -7 \\ -5 & 1\end{array}\right]\right\}$ of the vector space of all 2×2 matrices over R.	7	L3	CO1
Module - 2					
Q. 3	a	Find the linear transformation of $T: V_{2}(R) \rightarrow V_{2}(R)$ such that $T(1,1)=$ $(0,1)$ and $T(-1,1)=(3,2)$.	6	L3	CO2
	b	Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(2 y-x, y, 3 y-3 x)$ relative to bases $B_{1}=$ $\{(1,1),(-1,1)\}$ and $B_{2}=\{(1,1,1),(1,-1,1),(0,0,1)\}$.	7	L3	CO2
	c	Find the range, nullspace, rank and nullity of the linear transformation. $T: V_{3}(R) \rightarrow V_{2}(R)$ defined by $T(x, y, z)=(y-x, y-z)$ and verify also verify Rank-nullity theorem.	7	L3	CO2
OR					
Q. 4	a	Verify the transformation $T: V_{2}(R) \rightarrow V_{2}(R)$ defined by $T(x, y)=$ $(3 x+2 y, 3 x-4 y)$ is linear or not.	6	L2	CO2

	b	Given the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ -1 & 3\end{array}\right]$ find the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ relative to the bases $B_{1}=\{(1,2),(-2,1)\}$ and $B_{2}=$ $\{(1,-1,-1),(1,2,3),(-1,0,2)\}$.	7	L2	CO2				
	c	Show that the linear map $T: V_{3} \rightarrow V_{3}$ defined by $T\left(e_{1}\right)=e_{1}+$ $e_{2}, T\left(e_{2}\right)=e_{2}+e_{3}, T\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$ is non-singular and find its inverse.	7	L2	CO2				
Module - 3									
Q. 5	a	Determine the Eigen values and Eigen vectors of $\left[\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right]$.	6	L3	CO3				
	b	Verify the Cayley's Hamilton theorem for the matrix $A=$ $\left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 4 \end{array}\right]$	7	L2	CO3				
	c	Let V be a vector space of dimension 6 over R and let T be a linear operator whose minimal polynomial is $m(x)=\left(x^{2}-x+3\right)(x-2)^{2}$. Find the rational canonical form of T.	7	L2	CO3				
OR									
Q. 6	a	Find the eigen values and eigen vectors of $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.	6	L3	CO3				
	b	Determine all the possible Jordan canonical forms for a linear operator $T: V \rightarrow V$ whose characteristics polynomial is $\Delta(x)=(x-2)^{3}(x-5)^{2}$	7	L3	CO3				
	c	Find the characteristics equation for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ and hence find A^{-1}.	7	L3	CO3				
Module - 4									
Q. 7	a	Let V be a vector space of real continuous functions on the interval $0 \leq$ $t \leq 1$ with inner product defined by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ and the polynomial $f(t)=t+2, g(t)=3 t-2, h(t)=t^{2}-2 t-3$. Find $\langle f, g\rangle,\langle f, h\rangle,\\|f\\|,\\|g\\|$.	6	L2	CO4				
	b	Construct an orthogonal basis of $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3\end{array}\right]$ by Gram-Schmidt method.	7	L3	CO4				
	c	Find a least square solution of the system of equation $\mathrm{Ax}=\mathrm{b}$. where $A=\left[\begin{array}{ll} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array}\right], b=\left[\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right]$	7	L3	CO4				
OR									
Q. 8	a	If W is a subspace of a real inner product space V , prove that W^{\perp} is a subspace of V.	6	L2	CO4				

	b	Find an orthogonal basis for the vector space $V_{3}(R)$ by applying the Gram-Schmidth orthogonalization process to the vectors $(3,0,4),(-1,07),(2,9,11)$.	7	L3	CO4
	c	Find least square solution of $\mathrm{Ax}=\mathrm{b}$ for $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3\end{array}\right], b=\left[\begin{array}{c}3 \\ 5 \\ 7 \\ -3\end{array}\right]$ by QR-factorization.	7	L3	CO4
Module - 5					
Q. 9	a	Diagonalize the matrix $A=\left[\begin{array}{ll}5 & 3 \\ 1 & 3\end{array}\right]$ and hence find A^{8}.	6	L2	CO5
	b	Find the singular value decomposition of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$.	7	L3	C05
	c	Find the minimum and maximum values of $Q(x)=2 x^{2}+2 y^{2}+z^{2}$ subject to the constraint $X^{T} X=I$.	7	L3	CO5
OR					
Q. 10	a	Orthogonally diagonalize the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$	6	L2	CO5
	b	Find the singular value decomposition of the matrix $A=\left[\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$.	7	L3	CO5
	c	Make the change of variable $X=P Y$ that transforms the quadratic form $x_{1}^{2}+10 x_{1}^{2} x_{2}^{2}+x_{2}^{2}$.	7	L3	CO5

Fourth Semester B.E Degree Examination

Linear Algebra

BCS404D
TIME:03Hours
Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
2. M: Marks, L: RBT levels, C: Course outcomes.

	Module-1		M	L	C
Q. 1	a	Show that the set V of all polynomials of degree n over a field F is not a vector space over F	6	L2	C01
	b	The set $W=\{(x, y, z): x-3 y+4 z=2\}$ of the vector space $R^{3}(R)$ over the field of Real numbers. Check W is a subspace of $R^{3}(R)$	7	L2	CO1
	c	Does $\left\{1-x+3 x^{2}, 1+x+7 x^{2}, 1+3 x+4 x^{2}\right\}$ the set of vectors forms a linear independent set.	7	L2	C01
OR					
Q. 2	a	Define a subspace. Prove that the intersection of two subspaces of a vector space $V(F)$ is a subspace of $V(F)$	6	L2	CO1
	b	Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others for the vectors $(1,0,-1$, $0),(1,2,3,4),(-1,-2,0,1),(-2,-2,7,11)$	7	L2	CO1
	c	Find the value of k do the set of vectors $v_{1}=(k, 1,1), v_{2}=(0,1,1)$, $v_{3}=(k, 0, k)$ form a basis of $R^{3}(R)$?	7	L3	CO1
Module - 2					
Q. 3	a	Prove that $T: R^{3} \rightarrow R^{3}$ be defined by $T(a, b, c)=(3 a, a-b, 2 a+b+c)$ is a linear transformation.	6	L2	CO 2
	b	Verify the Rank- nullity theorem for the $\mathrm{T}: R^{3} \rightarrow R^{3}$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(x+2 y-z, y+z, x+y-2 z)$	7	L2	CO2
	c	Define Singular and non Singular linear transformation. If $T: P_{3}(R) \rightarrow P_{3}(R)$ is a Linear Transformation given by $T(p(x))=p(x+1)-p(x-1)$ then Check T is a singular linear transformation or not.	7	L2	CO2
OR					
Q. 4	a	Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then prove that $\mathrm{R}(\mathrm{T})$ is a subspace of W.	6	L2	CO2
	b	Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by	7	L2	CO2

		$T(x, y, z)=(x+3 y-2 z, 2 x+3 y, y-z)$. Check whether T is isomorphism and hence find T^{-1}.									
	c	Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(x+y, x, 3 x-y)$ with respect to $B_{1}=\{(1,1),(3,1)\}, \quad B_{2}=\{(1,1,1),(1,1,1),(1,0,0)\}$	7	L3	CO2						
Module - 3											
Q. 5	a	Let $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ and $f(x)=x^{2}-4 x+7$. Show that $f(A)=0$. Use the result to find A^{5}.	6	L2	CO3						
	b	Compute A^{-1}.	7	L2	CO3						
	c	Find the Eigen values and Eigen values of the matrix $A=\left[\begin{array}{ccc} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{array}\right]$	7	L3	CO3						
OR											
Q. 6	a	Find all the Jordan canonical form of A having $C_{A}(x)=(x-3)^{4}(x-5)^{5}$ and $m_{A}(x)=(x-3)^{2}(x-5)^{2}$.	6	L3	CO3						
	b	Find the characteristic and minimal polynomials for the matrix $A=\left[\begin{array}{ccc} -2 & -6 & -9 \\ 3 & 7 & 9 \\ -1 & -2 & -2 \end{array}\right]$	7	L3	CO3						
	c	Find the least square solution of $A X=B$ for $A=\left[\begin{array}{cc}1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7\end{array}\right] \& B=\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ 6\end{array}\right]$	7	L3	CO3						
Module - 4											
Q. 7	a	Define an inner product space. If V is an inner product space, then for any vectors α, β in V, Prove that $\\|\alpha+\beta\\| \leq\\|\alpha\\|+\\|\beta\\|$.	6	L2	CO4						
	b	Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace of R 4 spanned by the vectors $v_{1}=(1,1,1,1), v_{2}=(1,2,4,5), v_{3}=(1,-3,-4,-2) .$	7	L3	CO4						
	c	Let V be the vector space of all 2×3 matrices over R . The matrices $\mathrm{A}=\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4\end{array}\right] B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $C=\left[\begin{array}{ccc}3 & -5 & 2 \\ 1 & 0 & -4\end{array}\right]$ Find $i)\langle A, B\rangle \quad,\langle A, C\rangle,\langle B, C\rangle$ ii) $\langle 2 A+3 B, 4 C\rangle$ iii) $\\|A\\|$ and $\\|B\\|$	7	L2	CO4						
OR											
Q. 8	a	Prove that every finite dimensional inner product space has an orthonormal basis.	6	L2	CO4						
	b	Find an orthonormal basis for the vector space $V_{3}(R)$ by applying the Gram-Schmidt orthogonalization process to the vectors $(3,0,4),(-1,0,7)$ and $(2,9,11)$.	7	L3	CO4						
	c	Find the QR Factorization of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$	7	L3	CO4						

Module - 5									
Q. 9	a	Convert the quadratic form $Q(x)=x^{2}-8 x y-5 y^{2}$ into quadratic form with no cross-product form.					6	L2	CO5
	b	Find the singular value decomposition of $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$.					7	L3	CO5
	c	Diagonalize the matrix A , given that $\mathrm{A}=\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$ Hence find A^{4}					7	L2	CO5
OR									
Q. 10	a	Find the Singular value Decomposition of $A=\left[\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$.					6	L3	CO5
	b						7	L2	CO5
		Feature	Exp-1	Exp-2	Exp-3	Exp-4			
		X1	4	8	13	7			
		X2	11	4	5	14			
	c	Diagonalize the symmetric matrix $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$.					7	L3	CO5

