Model Question Paper Set -1with effect from 2022(CBCS Scheme)

USN

Fourth Semester B.E Degree Examination

LINEAR ALGEBRA (BCS405D)

TIME:03Hours

Max.Marks:100

Note:

- 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE.**
- 2. M: Marks, L: RBT levels, C: Course outcomes.

	Module - 1	Μ	\mathbf{L}	С
Q.1	a Show that set $V = \{a + b\sqrt{2} \mid a, b \in Q\}$, where Q is the set of all rational: field Q is a vector space, under usual addition and scalar multiplication.	6	L2	CO1
	b Let $S = \{(1, -3, 2), (2, 4, 1), (1, 1, 1)\}$ be a subset of $V_3(R)$. Show that the vector $(3, -7, 6)$ is in L[S].	7	L2	CO1
	c Show that the vectors (1, 1, 2, 4), (2, -1, -5, 2), (1, -1, -4, 0) and (2, 1, 1, 6) are linearly dependent in R4 and extract a linearly independent subset. Also find the dimension and a basis of the subspace spanned by them.	7	L3	C01
	OR			
Q.2	a Prove that a non-empty subset W is a subspace of a vector space V over F, if and only if $c_1 \alpha + c_2 \beta \in W, \forall \alpha, \beta \in W, c_1, c_2 \in F$. Show that the subset $W = \{(x, y, z) \mid x + y + z = 0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.	6	L2	C01
	b Verify the set $S = \{(1, 2, 1), (-1, 1, 0), (5, -1, 2)\}$ is linearly dependent or not.	7	L2	CO1
	c Find the basis and dimension of the subspace spanned by the subset $S = \left\{ \begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix} \right\}$ of the vector space of all 2 x 2 matrices over R.	7	L3	C01
Q.3	a Find the linear transformation of $T: V_2(R) \rightarrow V_2(R)$ such that $T(1, 1) = (0, 1)$ and $T(-1, 1) = (3, 2)$.	6	L3	CO2
	b Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ defined by $T(x, y) = (2y - x, y, 3y - 3x)$ relative to bases $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$.	7	L3	CO2
	Find the range, nullspace, rank and nullity of the linear transformation. $T: V_3(R) \rightarrow V_2(R)$ defined by $T(x, y, z) = (y - x, y - z)$ and verify also verify Rank-nullity theorem.	7	L3	CO2
Q.4	a Verify the transformation $T: V_2(R) \to V_2(R)$ defined by $T(x, y) = (3x + 2y, 3x - 4y)$ is linear or not.	6	L2	CO2

	b	Given the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ find the linear transformation	7	L2	CO2		
		$ \begin{array}{c} 1 \\ T: V_2(R) \to V_3(R) \text{ relative to the bases } B_1 = \{(1, 2), (-2, 1)\} \text{ and } B_2 = \{(1, -1, -1), (1, 2, 3), (-1, 0, 2)\}. \end{array} $					
	c	Show that the linear map $T: V_3 \rightarrow V_3$ defined by $T(e_1) = e_1 + e_2, T(e_2) = e_2 + e_3, T(e_3) = e_1 + e_2 + e_3$ is non-singular and find its	7	L2	CO2		
		Module – 3					
Q.5	a	6	L3	CO3			
	b	Verify the Cayley's Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 4 \end{bmatrix}$	7	L2	CO3		
	c	Let V be a vector space of dimension 6 over R and let T be a linear operator whose minimal polynomial is $m(x) = (x^2 - x + 3)(x - 2)^2$. Find the rational canonical form of T.	7	L2	CO3		
		OR					
Q.6	a	Find the eigen values and eigen vectors of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	6	L3	CO3		
	b Determine all the possible Jordan canonical forms for a linear operator $T: V \to V$ whose characteristics polynomial is $\Delta(x) = (x-2)^3(x-5)^2$ c Find the characteristics equation for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and hence find A^{-1}						
		Module 4					
Q.7	a	Let V be a vector space of real continuous functions on the interval $0 \le t \le 1$ with inner product defined by $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$ and the polynomial $f(t) = t + 2$, $g(t) = 3t - 2$, $h(t) = t^2 - 2t - 3$. Find $\langle f, g \rangle, \langle f, h \rangle, f , g $.	6	L2	CO4		
	b	7	L3	CO4			
	c	Find a least square solution of the system of equation Ax=b. where $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.	7	L3	CO4		
OR							
Q.8	a	If W is a subspace of a real inner product space V, prove that W^{\perp} is a subspace of V.	6	L2	CO4		

	b	Find an orthogonal basis for the vector space $V_3(R)$ by applying the Gram-Schmidth orthogonalization process to the vectors $(3, 0, 4), (-1, 0, 7), (2, 9, 11)$.	7	L3	CO4
	c	Find least square solution of Ax=b for $A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 5 \\ 7 \\ 2 \end{bmatrix}$ by	7	L3	CO4
		QR-factorization.			
		Module – 5			
Q.9	a	Diagonalize the matrix $A = \begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$ and hence find A^8 .	6	L2	CO5
	b	Find the singular value decomposition of the matrix $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.	7	L3	CO5
	c	Find the minimum and maximum values of $Q(x) = 2x^2 + 2y^2 + z^2$ subject to the constraint $X^T X = I$.	7	L3	CO5
		OR			
Q.10	a	Orthogonally diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	6	L2	C05
	b	Find the singular value decomposition of the matrix $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$.	7	L3	CO5
	c	Make the change of variable $X = PY$ that transforms the quadratic form $x_1^2 + 10x_1^2x_2^2 + x_2^2$.	7	L3	CO5

Model Question Paper Set-2 with effect from 2024(CBCS Scheme)

USN

Fourth Semester B.E Degree Examination

Linear Algebra

BCS404D

TIME:03Hours

Max.Marks:100

Note:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	Μ	L	С			
Q.1	a	Show that the set V of all polynomials of degree n over a field F is not a vector space over F	6	L2	CO1			
	b The set $W = \{(x, y, z): x - 3y + 4z = 2\}$ of the vector space $R^3(R)$ over the field of Real numbers. Check W is a subspace of $R^3(R)$							
	c	7	L2	CO1				
		OR						
Q.2	a	Define a subspace. Prove that the intersection of two subspaces of a vector space V(F) is a subspace of V(F)	6	L2	CO1			
	b	7	L2	CO1				
	Find the value of k do the set of vectors $v_1 = (k, 1, 1)$, $v_2 = (0, 1, 1)$, $v_3 = (k, 0, k)$ form a basis of $R^3(R)$?							
		Module – 2						
Q.3	a	Prove that $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(a, b, c) = (3a, a - b, 2a + b + c) is a linear transformation.	6	L2	CO2			
	b	Verify the Rank- nullity theorem for the T: $R^3 \rightarrow R^3$ defined by T (x, y, z)= (x + 2y - z, y + z, x + y - 2z)	7	L2	CO2			
	c	Define Singular and non Singular linear transformation. If $T: P_3(R) \rightarrow P_3(R)$ is a Linear Transformation given by	7	L2	CO2			
		T(p(x)) = p(x + 1) - p(x - 1) then Check T is a singular linear transformation or not.						
OR								
Q.4	a	Let T: V \rightarrow W be a linear transformation. Then prove that R(T) is a subspace of W.	6	L2	CO2			
	b	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by	7	L2	CO2			

		isomorphism and hence find T^{-1} .							
	C	Find the matrix of the linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined	7	13	CO2				
	C	/	LJ	02					
		$B_1 = \{(1,1), (3,1)\}, B_2 = \{(1,1,1), (1,1,1), (1,0,0)\}$							
		Module – 3							
0.5	9	Let $A = \begin{bmatrix} 2 & 3 \\ - & 2 \end{bmatrix}$ and $f(x) = x^2 - 4x + 7$. Show that $f(A) = 0$. Use	6	L2	CO3				
V •0	а	$L-1$ 2J the result to find A^5							
			7	12	CO3				
	b	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ 2 & 1 & 4 \end{bmatrix}$. Hence	1	L	COS				
		ComputeA ⁻¹ .	_	× .	~~~				
	с	Find the Eigen values and Eigen values of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$	7	L3	CO3				
		$A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \end{bmatrix}$							
		$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$							
		OR							
0(a	Find all the Jordan canonical form of A having	(т 2	CO2				
Q.0		$C_A(x) = (x-3)^4(x-5)^5$ and $m_A(x) = (x-3)^2(x-5)^2$.	0	LJ	003				
	h	Find the characteristic and minimal polynomials for the matrix	7	T 2	CO3				
	U	/	LJ	COS					
	с	7	L3	CO3					
		$\frac{\text{NIOdule} - 4}{\text{Define an inner product space If V is an inner product space then for}$			1				
Q.7	a any vectors α , β in V. Prove that $ \alpha + \beta < \alpha + \beta $.		6	L2	CO4				
		Apply the Gram-Schmidt orthogonalization process to find an							
	b	orthonormal basis for the subspace of R 4 spanned by the vectors	7	L3	CO4				
		$v_1 = (1,1,1,1), v_2 = (1,2,4,5), v_3 = (1,-3,-4,-2).$							
		Let V be the vector space of all 2×3 matrices over R. The matrices	_	TA	GG i				
	С	$A = \begin{bmatrix} 9 & 8 & 7 \end{bmatrix}_{B} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{and C} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$	7	L2	CO4				
		$ \begin{array}{c} A = \begin{bmatrix} 6 & 5 & 4 \end{bmatrix} \begin{array}{c} D = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \begin{array}{c} and c = \begin{bmatrix} 1 & 0 & -4 \end{bmatrix} \end{array} $							
		Find ι (A, B) , (A, C) , (B, C) ii) $(2A + 3B, 4C)$ iii) $ A $ and $ B $							
		OR							
0.8	0	Prove that every finite dimensional inner product space has an	6	12	CO4				
Q.0	а	orthonormal basis.	U		004				
	b	Find an orthonormal basis for the vector space $V_3(R)$ by applying the	7	1.3	CO4				
		Gram-Schmidt orthogonalization process to the vectors	/	10	UUT				
		(3, 0, 4), (-1, 0, 7) and (2, 9, 11).							
	с	Find the QR Factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	7	L3	CO4				
		L1 1 1 ^J							

Module – 5									
Q.9	a	Convert the of form with no c	6	L2	CO5				
	b	Find the singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.							CO5
	с	Diagonalize th	e matrix A, gi	ven that $A = \begin{bmatrix} - \\ - \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ Hence	find A^4 .	7	L2	CO5
				OR					
Q.10	a	Find the Singu	$\begin{bmatrix} 14 \\ -2 \end{bmatrix}$.	6	L3	CO5			
	h	Using PCA, Reduce the dimension for the following data						1.2	CO5
	U	Feature	Exp-1	Exp-2	Exp-3	Exp-4	/		COS
		X1	4	8	13	7			
		X2	11	4	5	14			
	с	Diagonalize th	e symmetric n	$\operatorname{natrix} A = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}.$		7	L3	CO5