

	b	Draw BMD and SFD for the beam shown in Fig. 4(b). Indicate the maximum bending moment and its location. Also show the point of contra flexure. Fig.Q4(b)	L2	2	14
	c				
Module-3					
Q. 05	a	What are the assumptions of simple bending?	L1	3	05
	b	Derive the Bernoulli's equation for bending stress	L2	3	10
	c	A rectangular beam 250 mm depth and 150 mm width is simply supported with a span of 8 m . What UDL per meter the beam can carry if the bending stress is not to exceed $140 \mathrm{~N} / \mathrm{mm}^{2}$	L2	3	05
OR					
Q. 06	a	Derive an expression for shear stress?	L2	3	10
	b	A beam with an I-section consists of $180 \times 15 \mathrm{~mm}$ flanges and curb of 280 mm depth and 15 mm thickness. It is subjected to a bending moment of $120 \mathrm{kN}-\mathrm{m}$ and shear force of 60 kN . Sketch the bending stress and shear stress distribution along the depth of section ?	L2	3	10
Module-4					
Q. 07	a	Derive the relationship between slope, deflection and radius of curvature?	L2	4	10
	b	A simply supported beam spanning 8 m carries a concentrated loads of 60 kN and 30 kN at distances of 2 m and 4 m from left support. Determine (i) the slope at the ends (ii) The location and magnitude of maximum deflection Assume $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=20 \times 10^{8} \mathrm{~mm}^{4}$	L3	4	10
OR					
Q. 08	a	Differentiate between short and long column	L1	4	4
	b	Describe the limitation of Euler's theory	L1	4	4
	c	Find Euler's load for a column $40 \mathrm{~mm} \times 50 \mathrm{~mm}$ C/S and 2 m long, if one of its end is fixed and other end is hinged. E for the material of the column is $200 \mathrm{~N} / \mathrm{mm}^{2}$. Find Rankine's load in the above case, if the yield stress in compression is $320 \mathrm{~N} / \mathrm{mm}^{2}, \alpha=1 / 7500$	L3	4	12
Module-5					
Q. 09	a	Show that the planes of maximum shear stresses are inclined at 45° with the principal planes	L2	5	06
	b	The state of stress in a two-dimensionally stressed body is shown in Fig. Q9(b). Determine the principal planes, principal stresses, maximum shear stress and their planes.	L2	5	14

		Fig. Q9(b).			
OR					
Q. 10	a	Show that in a thin cylinder the hoop stress is twice the longitudinal stress	L3	5	08
	b	What area the assumptions made in Lame's equation? Derive Lame's equation	L2	5	12

