Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Subject: ELECTROMAGNETIC THEORY
TIME: 03 Hours
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 02.
03.

Module -1			*Bloom's Taxonomy Level	Marks
Q. 01	a	State and explain the Cylindrical coordinate systems in detail	L1	05
	b	Show that electric field intensity at a point, due to ' n ' number of point charges, is given by $\quad \vec{E}=\frac{1}{4 \pi \epsilon_{o}} \sum_{i=1}^{n} \frac{Q_{i}}{R_{i}^{2}} \hat{a}_{R_{i}} \mathrm{~V} / \mathrm{m}$.	L3	07
	c	Two point charges, $\mathrm{Q}_{1}=30 \mu \mathrm{C}$ and $\mathrm{Q}_{2}=-100 \mu \mathrm{C}$, are located at $(2,0,5)$ and ($-1,0,-2$)m respectively. Find (i) force on Q_{1} (ii) force on Q_{2} (iii) the magnitude of forces (iv) directions of forces	L3	08
OR				
Q. 02	a	State Coulomb's law of force between any two point charges and indicate the units of the quantities involved.	L1	06
	b	Show that the electric field intensity at any point due to an infinite sheet of charge is independent of the distance to the point from the sheet.	L3	08
	c	Two point charges, Q1 and Q2 are located at $(1,2,0) \mathrm{m}$ and $(2,0,0) \mathrm{m}$ respectively. Find the relation between the charges, Q1 and Q2 such that the total force on a unit positive charge at $(-1,1,0)$ have (i). no x-component, (ii). no y-component.	L3	08
Module-2				
Q. 03	a	State and prove Gauss's law for point charge.	L1	06
	b	A point charge, $\mathrm{Q}=90 \mu \mathrm{C}$ is located at the origin and there are surface charge distributions $-8 \mu \mathrm{C} / \mathrm{m}^{2}$ at $\mathrm{r}=1 \mathrm{~m}$ and $4.5 \mu \mathrm{C} / \mathrm{m}^{2}$ at $\mathrm{r}=2 \mathrm{~m}$. Find \vec{D} everywhere.	L3	08
	c	Calculate the divergence of D at the point specified if (i) $\vec{D}=\left(1 / z^{2}\right)\left[10 \mathrm{xyz} \hat{a}_{\mathrm{x}}+5 \mathrm{x}^{2} \mathrm{z} \hat{a}_{\mathrm{y}}+\left(2 \mathrm{z}^{3}-5 \mathrm{x}^{2} \mathrm{y}\right) \hat{a}_{\mathrm{z}}\right]$ at $\mathrm{P}(-2,3,5)$ (ii) $\vec{D}=5 z^{2} \hat{a}_{r}+10 \mathrm{rz} \hat{a}_{z \text { at }} \mathrm{P}\left(3,-45^{0}, 5\right)$ (iii) $\vec{D}=2 \mathrm{r} \sin \theta \sin \Phi \hat{a}_{r}+\mathrm{r} \cos \theta \sin \Phi \hat{a}_{\boldsymbol{\theta}}+\mathrm{r} \cos \Phi \hat{a}_{\Phi}$ at $\mathrm{P}\left(3,45^{0}, 45^{\circ}\right)$	L3	08
OR				
Q. 04	a	State \& prove Divergence theorem.	L1	07
	b	Obtain an expression for electric field intensity due to an infinite line charge along z - axis having a uniform charge of $\rho_{\mathrm{L}} \mathrm{C} / \mathrm{m}$ using Gauss's law	L3	06
	c	Given $\vec{D}=0.3 \mathrm{r}^{2} \mathrm{a}_{\mathrm{r}} \mathrm{nC} / \mathrm{m}^{2}$ in free space, (a) find \vec{E} at $\mathrm{P}\left(2,25^{\circ}, 90^{\circ}\right)$ (b) find the total charge within the sphere, $r=3$. (c) Find the total electric flux leaving the sphere, $r=4, m$.	L3	07

22BEC401

Module-3				
Q. 05	a	Derive expression for potential and capacitance between the planes at $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{d}$ if the potential $\mathrm{v}=\mathrm{V}_{1}$ and $\mathrm{v}=\mathrm{V}_{2}$ respectively using Laplace's equation.	L3	06
	b	If potential of $V=x^{2} y z+A y^{3} z$ Volts, i) find A so that the Laplace's equation is satisfied. ii) With that value A , determine the electric field at a point p whose coordinates are $(2,1,-1)$.	L3	08
	c	There exists a potential of $\mathrm{V}=-2.5$ volts on a conductor at 0.02 m and $\mathrm{V}=$ 15 volts at $\mathrm{r}=0.35 \mathrm{~m}$. Determine E and D by solving the Laplace's equation in spherical coordinates representing the potential system.	L3	08
OR				
Q. 06	a	Derivation of Ampere's Circuital Law in point form using Strokes theorem.	L3	06
	b	Derive Poisson's and Laplace equations and writ Laplace equation in cylindrical and polar coordinates.	L3	06
	c	Long concentric and right conducting cylinders in free space, at $\mathrm{r}=5 \mathrm{~mm}$ and $\mathrm{r}=25 \mathrm{~mm}$ in cylindrical coordinates have voltages of zero and V_{o} respectively. If the electric field intensity, $\vec{E}=-8.28 \times 10^{3} \hat{a}_{r}$ at $\mathrm{r}=15 \mathrm{~mm}$, find V_{0} and the charge density on the outer conductor by using Laplace's equation.	L3	08
Module-4				
Q. 07	a	State and Explain the force between differential Current Elements.	L1	05
-	b	Find the force per meter length between two long parallel wires separated by 10 cm in air and carrying current of 100 A in opposite direction state the nature of force between wires	L3	07
	c	Find magnetization in a magnetic material where, (i) $\mu=$ $1.8 \times 10^{-5}\left(\frac{H}{m}\right)$ and $M=120\left(\frac{H}{m}\right)$. (ii) $\mu_{r}=22$, there are 8.3×10^{28} atoms $/ \mathrm{m}^{3}$ and each atom has dipole moment of 4.5×10^{-27} (A.M ${ }^{2}$) and (iii) $\mathrm{B}=300(\mu T)$ and $\mathrm{Xm}=15$.	L3	08
OR				
Q. 08	a	Write short notes Magnetic Boundary Conditions.	L1	05
	b	Derive the equations for Magnetic circuits with suitable diagram.	L3	07
	c	A conductor 4 m long lies along the y -axis with a current of 10A in the $\overrightarrow{a_{y}}$ direction. Find the force on the conductor if the field in the region is (in region is) $\vec{B}=0.005 \overrightarrow{a_{x}}$ Tesla.	L3	08
Module-5				
Q. 09	a	What is a uniform wave? Explain its propagation in free space with necessary equations	L1	05
	b	Starting from Maxwell's equations, derive the wave equation for sinusoidal waves in good dielectric medium.	L3	07
	c	A 9.375 GHz uniform plane wave is propagating in polyethylene $\left(\epsilon_{\mathrm{r}}=2.26\right)$. If the amplitude of the electric field is $500 \mathrm{~V} / \mathrm{m}$ and the material is assumed to be lossless, find (i) Phase constant (ii) Wavelength (iii) Velocity of propagation (iv) Intrinsic impedance (v) magnetic field intensity	L3	08
OR				
Q. 10	a	Show that the uniform plane wave is transverse in nature.	L3	07

	b	I. Write a short note on: Skin effect in conductors. II. What do you mean by depth of penetration?	L1	05
	c	With respect to wave propagation in good conductors, describe what the skin effect is and derive an expression for the depth of penetration. If $\sigma=58 \times 10^{6}$ mhos/m at frequency 10 MHz, determine the depth of penetration.	L3	08

[^0]
Model Question Paper-1 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination Subject: ELECTROMAGNETIC THEORY
TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 02.
03.

Q. 06	a	Derivation of Ampere's Circuital Law in point form using Strokes theorem.	L3	06
	b	If the magnetic field intensity in a region is $\mathrm{H}=(3 \mathrm{y}-2) \mathrm{a}_{z}+2 \mathrm{x} \mathrm{a}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$, find the current density at origin. And Calculate the value of J if $\mathrm{H}=\frac{1}{\sin \theta} \mathrm{a}_{\theta} \mathrm{A} / \mathrm{m}$ at $\mathrm{P}\left(2,30^{\circ}, 20^{\circ}\right)$	L3	08
	c	Long concentric and right conducting cylinders in free space, at $\mathrm{r}=5 \mathrm{~mm}$ and $r=25 \mathrm{~mm}$ in cylindrical coordinates have voltages of zero and V_{0} respectively. If the electric field intensity, $\vec{E}=-8.28 \times 10^{3} \hat{a}_{r}$ at $\mathrm{r}=15 \mathrm{~mm}$, find V_{o} and the charge density on the outer conductor by using Laplace's equation.	L3	08
Module-4				
Q. 07	a	State and Explain the force between differential Current Elements.	L1	05
	b	Find the force per meter length between two long parallel wires separated by 10 cm in air and carrying current of 100 A in opposite direction state the nature of force between wires	L3	07
	c	Let the permittivity be $5 \mu \mathrm{H} / \mathrm{m}$ in a region A where $\mathrm{x}<0$ and $20 \mu \mathrm{H} / \mathrm{m}$ in region B, where $x>0$, If there is a surface current density $K=150 a_{y}-200 a_{z} A / m$ at $x=0$ and $H_{A}=300 a_{x}-400 a_{y}+500 a_{z} A / m$. Find i. $\left\|\mathrm{H}_{\mathrm{tA}}\right\|$ ii. $\left\|\mathrm{H}_{\mathrm{NA}}\right\|$ iii. $\left\|\mathrm{H}_{\mathrm{tB}}\right\|$ iv. $\left\|\mathrm{H}_{\mathrm{NB}}\right\|$	L3	08
OR				
Q. 08	a	Determine the boundary conditions for the magnetic field at the interface between two different magnetic materials	L1	08
	b	Derive the equations for Magnetic circuits with suitable diagram.	L3	07
	c	The point charge $\mathrm{Q}=18 \mathrm{nC}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction of $\mathrm{a}_{\mathrm{v}}=0.6 \mathrm{a}_{\mathrm{x}}+0.75 \mathrm{a}_{\mathrm{y}}+0.3 \mathrm{a}_{\mathrm{z}}$ calculate the magnitude of the force exerted on the charge by the field i. $\quad B=-3 a_{x}+4 a_{y}+6 a_{z} m T$ ii. $\quad E=-3 a_{x}+4 a_{y}+6 a_{z} K V / m$	L3	05
Module-5				
Q. 09	a	What is a uniform wave? Explain its propagation in free space with necessary equations	L1	05
	b	What is inconsistency of Ampere's law with continuity equation? Derive the modified Ampere's law by Maxwell for time varying fields	L3	07
	c	A 9.375 GHz uniform plane wave is propagating in polyethylene $\left(\epsilon_{\mathrm{r}}=2.26\right)$. If the amplitude of the electric field is $500 \mathrm{~V} / \mathrm{m}$ and the material is assumed to be lossless, find (i) Phase constant (ii) Wavelength (iii) Velocity of propagation (iv) Intrinsic impedance (v) magnetic field intensity	L3	08
OR				
Q. 10	a	Show that the uniform plane wave is transverse in nature.	L3	07
	b	State and explain Poynting Theorem .	L1	05
	c	With respect to wave propagation in good conductors, describe what the skin effect is and derive an expression for the depth of penetration. If $\sigma=58 \times 10^{6}$ $\mathrm{mhos} / \mathrm{m}$ at frequency 10 MHz , determine the depth of penetration.	L3	08

[^1] attained by every bit of questions.

[^0]: ${ }^{*}$ Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

[^1]: *Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be

