Model Question Paper-1/2 with effect from 2023-24 (CBCS Scheme)

USN \square

Third Semester B.E. Degree Examination

Sulbject Title: Digital Logic Circuits

Time :03 Hours
Max Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			RBL	COs	Mars	PO
Q. 01	a	What do you mean by combinational logic? Write the logic truth table using 4 input variables \& output is high when majority of inputs are high.	L1	01	06	1,2
	b	Place the following equations into the proper canonical Form. i. $\mathrm{P}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{ab}{ }^{\prime}+\mathrm{ac}{ }^{\prime}+\mathrm{bc}$ ii. $T=f(a, b, c)=\left(a+b^{\prime}\right)\left(b^{\prime}+c\right)$.	L2	01	08	1,2
	c	Simplify the following expression using a 3 variable K Map. $\mathrm{Q}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum(1,2,3,6,7)$	L2	01	06	1,2
OR						
Q. 02	a	Simplify the following expression using a 4 variable K Map. $\mathrm{P}=\mathrm{f}(\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u})=\sum(1,3,4,6,9,11,12,14)$	L3	01	08	1,2
	b	Simplify using the Quine-McClusky minimization technique. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum m(0,1,3,7,8,9,11,15)$.	L2	01	12	1,2
Module-2						
Q. 03	a	Explain 74X138 3:8 decoder with a neat circuit diagram.	L1	02	06	
	b	Implement the following using 8:1 MUX with $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as select lines. $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,1,5,6,7,9,10,15)$	L3	02	06	2,3
	c	Design a 1 bit comparator using gates.	L3	02	08	1,2,3
OR						
Q. 04	a	Write a short note on look ahead carry generator.	L2	02	06	1,2
	b	Design a full adder using 4:1 MUX and also using basic gates.	L4	02	08	2,3,4
	c	Design a 2 bit comparator using gates.	L4	02	06	2,3
Module-3						
Q. 05	a	With a neat diagram, explain the working of master-slave JK flip flop along with waveforms.	L2	02	10	1,2
	b	Explain switch debouncer using SR latch with waveforms	L3	02	10	1,2
OR						
Q. 06	a	Differentiate between latches and flip flops. Derive the characteristic equation of SR,JK,D \& T flip flop.	L2	02	10	1,2
	b	With a neat diagram explain the working of D \& T flip flop	L1	03	10	1,2

BEE302

*Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

