Fifth Semester B.E. / B. Arch. / MCA / M.Tech. Semester End Examination, MAR/APR. 2023-24 ANALOG ELECTRONIC CIRCUITS (Model Question Paper)

Time: 3 Hours

Max. Marks: 100

Instructions:	1.	Answer any Five full questions choosing ONE from each unit.

		UNIT - I	L	CO	PO	M
1	a.	Explain the working of negative clamper circuit. Draw the required waveforms				
			(2)	(1)	(1)	(5)
	b.	Design a fixed bias circuit for the following specifications:$V_{C C=}=12 \mathrm{~V}, I_{C}=3 \mathrm{~mA}, V_{C E=}=6 \mathrm{~V}, \beta=100$				
			(2)	(1)	(1)	(5)
	c.	For the voltage divider bias circuit, derive an expression for stability factor $S_{I c 0}$ and explain the variation of $S_{I C 0}$ for different cases.				
			(3)	(1)	(2)	(10)
2	a.	Explain the working of series clipping circuit to clip the input sinusoidal signal above reference level. Draw the waveforms and transfer characteristics.				
			(1)	(1)	(1)	(5)
	b.	For the emitter stabilized bias circuit, calculate the location of operating point Q and the voltages $V_{B}, V_{C}, V_{B C}$ if $R_{C}=3.3 k \Omega, R_{B}=220 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega, V_{C C}=10 \mathrm{~V}, \beta=150$.				
			(3)	(1)	(2)	(5)
	c.	For the fixed bias circuit, derive an expression for stability factors $S_{I c o,} \quad S_{V B E}, S_{\beta}$ and also obtain the relation between (i) $S_{I c o,}$ and $S_{V B E}$, (ii) $S_{I c o,}$ and S_{β}.				
			(3)	(1)	(2)	(10)
		UNIT - II	L	CO	PO	M

3	a.	Draw the hybrid parameter model for common base and common emitter modes along with the suitable equations.				
			(3)	(2)	(1)	(6)

	b.	For the common collector amplifier, calculate current gain, input resistance, voltage gain and output impedance if $V_{C C}=10 \mathrm{~V}, R_{1}=6 \mathrm{k} \Omega, R_{2}=6 \mathrm{k} \Omega, R_{S}=600 \Omega, R_{E}=1 \mathrm{k} \Omega, R_{\mathrm{L}}=10 \mathrm{k} \Omega$. hparameters are $h_{o c}=\frac{25 \mu A}{V}, h_{r c}=1, h_{f c}=-101, h_{i c}=1.2 k \Omega$. Use exact h-parameter model.				
			(3)	(2)	(2)	(10)
	c.	Compare common base, common collector and common emitter modes.				
			(1)	(2)	(1)	(4)
4	a.	Explain the effect of input RC network, output RC network and bypass network on the low frequency response of RC coupled amplifier.				
			(3)	(2)	(1)	(10)

b. Using hybrid pi model, derive an expression for common emitter short circuit current gain and its variation on frequency. Also obtain expressions for f_{β} and f_{T}.

	(4)	(2)	(2)	(10)
UNIT - III	L	CO	PO	M

$\mathbf{5}$ a. | | For the Darlington connection, derive an expression for current gain and input resistance for first |
| :--- | :--- | :--- | :--- | and second stage. Also calculate overall current gain.

(3) (3) $^{(3)}$ (1)
(10)
b. For the two stage CE-CE , RC coupled amplifier, $R_{1}=220 k \Omega, R_{2}=22 k \Omega, R_{C}=3.3 k \Omega$. $R_{E}=$ $470 \Omega, R_{S}=600 \Omega, C_{E}=47 \mu F, C_{1}=C_{2}=0.1 \mu F$ for the first stage. For the second stage the component values are $R_{1}^{\prime}=33 k \Omega, R_{2}^{\prime}=3.3 k \Omega, R_{C}^{\prime}=4.7 k \Omega, R_{E}^{\prime}=330 \Omega, C_{E}^{\prime}=$ $10 \mu \mathrm{~F}, V_{C C}=10 \mathrm{~V}, h_{i e}=1.2 \mathrm{k} \Omega, h_{f e}=50$. Calculate the overall voltage gain taking source

		resistance into account, input resistance and output resistance. Draw the circuit diagram and use approximate hybrid model.				
			(4)	(3)	(2)	(10)
6	a.	Explain the features of following feedback amplifiers: (i)Voltage series feedback amplifiers (ii)Current shunt feedback amplifiers				
			(2)	(3)	(1)	(10)
	b.	For the current series feedback amplifier, obtain an expression for input resistance with feedback and output resistance with feedback.				
			(2)	(3)	(1)	(10)
		UNIT - IV	L	CO	PO	M
7	a.	Define total harmonic distortion in power amplifiers. Hence derive an expression for second harmonic distortion in Class-A power amplifier.				
			(2)	(4)	(1)	(10)
	b.	Compare push-pull and complementary symmetry Class B power amplifiers.				
			(1)	(4)	(1)	(5)
	c.	In class B push-pull amplifier, show that efficiency at maximum power dissipation is only 50%.				
			(2)	(4)	(1)	(5)
8	a.	Explain Barkhausen criteria for sustained oscillations.				
			(2)	(4)	(1)	(5)
	b.	For Wien bridge oscillator, derive an expression for frequency of oscillations. Also calculate the minimum value of A and β.				
			(4)	(4)	(2)	(10)
	c.	Calculate the frequency of oscillations in Colpitt's oscillator if $C_{1}=C_{2}=3 n F, L=200 \mu \mathrm{H}$. Draw the circuit diagram.				
			(3)	(4)	(2)	(5)
		UNIT -V	L	CO	PO	M
9	a.	Compare BJT and FET on different parameters.				
			(2)	(5)	(1)	(5)
	b.	Explain the construction of JFET and its characteristics.				
			(2)	(5)	(1)	(10)
	c.	Explain the dc analysis and working of fixed bias circuit of JFET.				
			(2)	(5)	(1)	(5)
10	a.	Consider JFET in common source configuration working with self bias , bypassed source resistance mode. Obtain expressions for input impedance, output impedance and voltage gain. Draw the small signal model				
			(3)	(5)	(2)	(6)
	b.	For the voltage divider bias circuit of JFET, $R_{1}=22 k \Omega, R_{2}=12 k \Omega, R_{D}=1 k \Omega, R_{S}=$ $2.2 k \Omega, V_{D D}=10 \mathrm{~V}, I_{D S S}=10 \mathrm{~mA}, V_{p}=-3 \mathrm{~V}$. Calculate the drain current, voltage between gate and source, voltage between drain and source, voltage at the gate and source.				
			(3)	(5)	(2)	(10)
	c.	Compare D-MOSFET and E-MOSFET devices.				
			(2)	(5)	(1)	(4)

