USN: __

Fifth Semester B.E. Degree Examination Subject Title: Digital Signal Processing-BEI503

Time: 03 hours

Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

02. 03.

		03.	* Bloom's		
		Module – 1	Taxonomy Level	COs	Marks
	а	Describe the basic elements of DSP with suitable block diagram	1	1	5
Q. 01	b	x(n) = (1,2,3,4). Plot $x(n)$, $x(2n)$, $2x(n)$, $-x(n)$, $x(-n)$, $-x(-n)$, $x(n+1)$ and $x(n-1)$.	2	1	5
	С				
		OR			
Q. 02	а	Explain sampling, aliasing and reconstruction	1	1	6
	b	Find out whether the DTS equation $y(n)=ax(n)+b$ is static, time-invariant, linear and causal system.	2	1	4
	С		2	1	
		Module – 2			
	а	Find the convolution of the sequences $x(n)=[1,2,3,4]$ and $h(n)=[1,1,1,1]$ using graphical method.	1	2	6
Q. 03	b	Determine the correlation of the sequences $x(n)=[1,2,3,4]$ and $y(n)=[5,6,7,8]$	2	2	4
	С		1		1
	а	State and prove the time reversal and linear convolution properties in Z domain	1	2	4
Q. 04	b	Determine the z-transform of the signal 1. $x[n]=[3(2^n)-4(3^n)]u[n]$	2	2	6
	-	$2. x[n] = (\cos w_0 n) u[n]$	2	2	
	С	Module – 3	Z	Z	
	а	State and prove the linearity, time shifting and frequency shifting properties of DFS	2	3	6
Q. 05	b	Find the frequency response of 1. $x(n)=u(-n)$ and 2. $x(n) = e^{i\omega n}$	1	3	4
	С				
	5	OR	1	I	<u> </u>
	а	State and prove the properties of DTFT	2	3	6
Q. 06	b	Find the DTFT of the equation $x(n) = a^n u(n)$ and $x(n) = a^n u(-n-1)$	1	3	4
	С				
		Module – 4	·	• •	•
	а	Find the 3 point DFT of x(n)=[1,2 3]	2	3	4
Q. 07	b	State and prove the DFT symmetry property for real, imaginary, real and even, real and odd, imaginary and even & imaginary and odd sequence.	1	3	6
	С				
		OR			
Q. 08	а	Find N point DFT of the following sequences: 1. $x(n)=u(n)-u(n-n0)$ 2. $x(n) = e^{i\omega n}$	2	3	4
	b	Find the 8 point DIF FFT of the sequence $x(n)=[1\ 1\ 1\ 1]$	2	3	6
	c			-	-

		Module – 5					
	а	Write low pass filter specifications with suitable graph and equations	1	4	3		
Q. 09	b	Design low pass Butterworth filter using bilinear transformation method for satisfying the following constraints. Pass band frequency 0.162 rad., stop band frequency 1.63 rad., pass band ripple 3 dB., stop band attenuation 30 dB., and sampling frequency is 8kHz.	3	4	7		
	с						
	OR						
Q. 10	а	Tabulate the window characteristics	1	4	2		
	b	Design low pass FIR filter for N=4 and cutoff frequency = 4 radians.	3	4	8		
	С						

* Bloom's Taxonomy Level: Indicates as L1, L2, L3, L4, etc. it is also desirable to indicate Cos and POs to be attained by every bit of question.

USN: _

Fifth Semester B.E. Degree Examination Subject Title: Digital Signal Processing-BEI503

Time: 03 hours

Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

02. 03.

		OS. Module – 1	* Bloom's Taxonomy Level	COs	Marks
	а	Explain the steps for converting Analog to digital domain	1	1	4
Q. 01	b	State and explain the sampling theorem and aliasing. Find the sampling frequency of the equation	2	1	6
		$s(t) = 10\sin 300\pi t - \cos 100\pi t$			
	С				
		OR			
	a	Explain the classification of signals	1	1	2
	b	$y(n) = x^2(n)$. find linearity, time variance, causality and stability	2	1	4
Q. 02	с	x(n) = (2,3,4,2). Find the odd and even component, periodicity and fundamental period and energy and power of $x(n)$	2	1	4
	1	Module – 2	T	I	
	а	Find the linear convocation of $x(n)=(1, 1, 1) = h(n)$	1	2	5
Q. 03	b	Determine the circular convolution of the sequences x(n)=[1,2,3,4,5] and y(n)=[9,,8,7,6,5] using graphical method	2	2	5
	С				
	1	OR	1	1	
	а	State and prove linearity and time shift and time advance properties of Z transform.	1	2	2
Q. 04	b	Find the Z transform of following sequences: 1. $x(n)=u(-n)$ and 2. $x(n) = e^{i\omega n}$	2	2	4
	с	Determine the z-transform of the signal 1. x[n]=-a ⁿ u[-n-1] 2. x[n]=(cosw ₀ n)u[n]	2	2	4
		Module – 3			
	а	Find the DFS of the equations $x(n) = a^n u(n)$ and $x(n) = a^n u(n-1)$	2	3	4
Q. 05	b	State and prove the linearity, time shifting and frequency shifting properties of DFS	1	3	6
	с				
		OR			
	а	Find the frequency response of $h(n) = 4\delta(n) + 2\delta(n-1) + 4\delta(n-2)$	2	3	4
Q. 06	b	State and prove any three properties of DTFS	1	3	6
	С				
		Module – 4			
	а	Find the DFT of $x(n-5)$ and $\delta(n)$	2	3	4
Q. 07	b	State and prove the DFT symmetry property for real, imaginary, real and even, real and odd, imaginary and even & imaginary and odd	1	3	6
		sequence.			
	C				
0.00	-	OR	2	2	4
Q. 08	а	Determine the 5 point DFT of x(n)=[1,2,3]	2	3	4

	b	Compute 8 point DIT-FFT for $x(n) = [1, 1, 1, 1]$	2	3	6
	С				
		Module – 5			
Q. 09	а	Write the equations of Hamming and Hanning windows in time domain and frequency domain	1	4	2
	b	Design low pass Butterworth filter using impulse invariance method for satisfying the following constraints. Pass band frequency 0.162 rad., stop band frequency 1.63 rad., pass band ripple 3 dB., stop band attenuation 30 dB., and sampling frequency is 8kHz.	3	4	8
	С				
		OR			
Q. 10	а	Tabulate the differences between FIR and IIR filters.	1	4	2
	b	Design FIR LPF filter for N=5 and cutoff frequency 0.5 radians for Hanning window.	3	4	8
	С				

* Bloom's Taxonomy Level: Indicates as L1, L2, L3, L4, etc. it is also desirable to indicate Cos and POs to be attained by every bit of question.

5th sem Model QP

"Sunitha SL" <sunithabenaka@gmail.com>

To: sbhalbhavi@vtu.ac.in

January 12, 2025 12:50 PM

Sunithe S L Associate Professor E and IE department UBDTCE, Davanagere 9980892184