Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN \square

Second Semester B.E Degree Examination Mathematics-II for Computer Science Engineering-BMATS201

TIME: 03 Hours
Note: 1. Answer any FIVE full questions, choosing at least ONE question from each module.
2. VTU Formula Hand Book is permitted.
3. M: Marks, L: Bloom's level, C: Course outcomes.

Module -1			M	L	C
Q. 01	a	Evaluate $\int_{-c}^{c} \int_{-\boldsymbol{b}}^{\boldsymbol{b}} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$	7	L2	C01
	b	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} x y d y d x$ by changing the order of integration.	7	L3	C01
	c	Show that $\gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$	6	L2	C01
OR					
Q. 02	a	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$ by changing into polar coordinates	7	L3	C01
	b	Find by double integration, the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.	7	L2	C01
	c	Using Mathematical tools, write the code to find the area of an ellipse by double integration $A=4 \int_{0}^{a} \int_{0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} d y d x$.	6	L3	C05

Module-2					
Q. 03	a	Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of the vector $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$.	7	L2	CO2
	b	If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$, find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point (1,-1, 1)	7	L2	C02
	c	Prove that the spherical coordinate system is orthogonal.	6	L2	CO2
OR					
Q. 04	a	Find the angle between the surfaces $x^{2}+y^{2}-z^{2}=4$ and $z=x^{2}+y^{2}-13$ at $(2,1,2)$	7	L3	CO2
	b	Show that the vector $\vec{F}=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}$ is both solenoidal and irrotational.	7	L2	CO2
	c	Using Mathematical tools, write the code to find the curl of	6	L3	C05

		$\vec{F}=x y^{2} \hat{\imath}+2 x^{2} y z \hat{\jmath}-3 y z^{2} \hat{k}$									
Module-3											
Q. 05	a	Let $V=R^{3}$ be a vector space and consider the subset W of V consisting of vectors of the form $\left(a, a^{2}, b\right)$, where the second component is the square of the first. Is W a subspace of V ?							7	L2	C03
	b	Find the basis and the dimension of the subspace spanned by the vectors $\{(2,4,2),(1,-1,0),(1,2,1),(0,3,1)\}$ in $V_{3}(R)$.							7	L2	C03
	c	Find the kernel and range of the linear operator $T(x, y, z)=(x+y, z)$ of $R^{3} \rightarrow R^{2}$							6	L2	C03
OR											
Q. 06	a	Let $f(x)=2 x^{2}-5$ and $g(x)=x+1$. Show that the function $h(x)=4 x^{2}+3 x-7$ lies in the subspace Span $\{\mathrm{f}, \mathrm{g}\}$ of P_{2}.							7	L2	C03
	b	Prove that the transformation $T ; R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(3 x, x+y)$ is linear. Find the images of the vectors (1, 3) and $(-1,2)$ under this transformation.							7	L2	C03
	c	Show that the functions $f(x)=3 x-2$ and $g(x)=x$ are orthogonal in P_{n} with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$.							6	L2	C03
Module-4											
Q. 07	a	Find an approximate value of the root of the equation $x e^{x}=3$, using the Regula-Falsi method, carry out three iterations.							7	L2	C04
	b	Using Newton's divid following $\begin{array}{\|c\|} \hline x \\ \hline f(x) \\ \hline \end{array}$	$\begin{gathered} \text { ded o } \\ \hline 4 \\ \hline 48 \end{gathered}$	$\begin{gathered} \text { iffere } \\ \hline 5 \\ \hline 100 \end{gathered}$	$\begin{gathered} \text { ace fo } \\ \hline 7 \\ \hline 294 \end{gathered}$	mula 10 900	$\begin{gathered} \text { evalua } \\ \hline 11 \\ \hline 1210 \end{gathered}$	$f(8)$ from the	7	L2	C04
	c	Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using the Trapezoidal rule by taking 6 divisions.							6	L3	C04
OR											
Q. 08	a	Find the real root of the equation $\cos x=x e^{x}$, which is nearer to $x=0.5$ by the Newton-Raphson method, correct to three decimal places.							7	L2	C04
	b	Given, $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192$,							7	L2	C04

		$\sin 60^{\circ}=0.8660$, find $\sin 48^{0}$ using Newton's forward interpolation formula.			
	c	Evaluate $\int_{0}^{3} \frac{1}{4 x+5} d x$ by using Simpson's $1 / 3^{\text {rd }}$ rule by taking 7 ordinates.	6	L3	C04
Module-5					
Q. 09	a	By Taylor's series method, find the value of y at $x=0.1$ and $x=0.2$ to 5 places of decimals from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.	7	L2	C04
	b	Using the Runge-Kutta method of fourth order, find $y(0.1)$ given that $\frac{d y}{d x}=3 e^{x}+2 y, y(0)=0$, taking $h=0.1$	7	L2	CO4
	c	Given that $\frac{d y}{d x}=x-y^{2}$ and the data $y(0)=0, y(0.2)=0.02$, $y(0.4)=0.0795, y(0.6)=0.1762$ compute y at $x=0.8$ by applying Milne's method.	6	L2	C04
OR					
Q. 10	a	Using the modified Euler's method, find $y(0.1)$ given that $\frac{d y}{d x}=x^{2}+y$ and $\mathrm{y}(0)=1$ take step $h=0.05$ and perform two modifications in each stage.	7	L2	CO4
	b	Using the Runge-Kutta method of fourth order, find $\mathrm{y}(0.2)$ given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0.1)=1.0912$, taking $h=0.1$	7	L2	CO4
	c	Using Mathematical tools, write the code to find the solution of $\frac{d y}{d x}=1+\frac{y}{x}$ at $y(2)$ taking $\mathrm{h}=0.2$. Given that $\mathrm{y}(1)=2$ by Runge-Kutta $4^{\text {th }}$ order method.	6	L3	C05

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN \square

Second Semester B.E Degree Examination Mathematics-II for Computer Science Engineering-BMATS201

TIME: 03 Hours

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least ONE question from each module.
2. VTU Formula Hand Book is permitted.
3. M: Marks, L: Bloom's level, C: Course outcomes.

Module -1			M	L	C
Q. 01	a	Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$	7	L2	C01
	b	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing into polar coordinates.	7	L2	C01
	c	Show that $\beta(m, n)=\frac{\gamma(m) \gamma(n)}{\gamma(m+n)}$	6	L2	C01

OR					
Q. 02	a	Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$ by changing the order of integration	7	L2	C01
	b	Using double integration find the area of a plate in the form of a quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	7	L3	C01
	c	Write the codes to find the volume of the tetrahedron bounded by the planes $x=0, y=0$ and $z=0, \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ using Mathematical tools.	6	L3	C05

Module-2

| Q. 03 | a | Find $\nabla \phi$, if $\phi=x^{3}+y^{3}+z^{3}-3 x y z$ at the point $(1,-1,2)$ | $\mathbf{7}$ | L2 | C02 |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| | b | If $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ find $d i v \vec{F}$ and $\operatorname{curl} \vec{F}$ | $\mathbf{7}$ | L2 | C02 |
| | c | Express the vector $\vec{A}=z \hat{\imath}-2 x \hat{\jmath}+y \hat{k}$ in cylindrical coordinates. | $\mathbf{6}$ | L2 | C02 |
| Q.04 | a | Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in
 the direction of the vector $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$. | $\mathbf{7}$ | L2 | C02 |
| | b | Show that the spherical coordinate system is orthogonal | $\mathbf{7}$ | L3 | $\mathbf{C O 2}$ |
| | c | Using the Mathematical tools, write the codes to find the gradient of | $\mathbf{6}$ | L3 | $\mathbf{C 0 5}$ |

		$\emptyset=x^{2} y z$.			
Module-3					
Q. 05	a	Prove that the subset $W=\{(x, y, z) \mid x-3 y+4 z=0\}$ of the vector space R^{3} is a subspace of R^{3}.	7	L3	C03
	b	Determine whether the matrix $\left[\begin{array}{cc}-1 & 7 \\ 8 & -1\end{array}\right]$ is a linear combination of $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right],\left[\begin{array}{cc}2 & -3 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$ in the vector space M_{22} of 2×2 matrices.	7	L2	C03
	c	Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ such that $\mathrm{T}(-1,1)=(-1,0,2)$ and $\mathrm{T}(2,1)=(1,2,1)$.	6	L2	C03
OR					
Q. 06	a	Show that the set $S=\{(1,2,4),(1,0,0),(0,1,0),(0,0,1)\}$ is linearly dependent.	7	L2	C03
	b	Let P_{n} be the vector space of real polynomial functions of degree $\leq n$. Show that the transformation $T: P_{2} \rightarrow P_{1}$ defined by $T\left(a x^{2}+b x+c\right)=(a+b) x+c$ is linear.	7	L2	C03
	c	Verify the Rank-nullity theorem for the linear transformation $\mathrm{T}: \mathrm{V}_{3}(\mathrm{R}) \rightarrow \mathrm{V}_{2}(\mathrm{R})$ defined by $T(x, y, z)=(y-x, y-z)$.	6	L2	C03
Module-4					
Q. 07	a	Find the real root of the equation $3 x=\cos x+1$ correct to three decimal places using Newton's Raphson method.	7	L2	C04
	b	Find y at $x=5$ if $y(1)=-3, y(3)=9, y(4)=30, y(6)=132$ using Lagrange's interpolation formula.	7	L2	C04
	c	Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by taking 7 ordinates and by using Simpson's $3 / 8$ rule.	6	L3	C04
OR					
Q. 08	a	Find an approximate root of the equation $x^{3}-3 x+4=0$ using the method of false position, correct to three decimal places which lie between -3 and -2. (Carry out three iterations).	7	L2	C04

