Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

Second Semester B.E Degree Examination

Mathematics-II for Computer Science Engineering-BMATS201

TIME: 03 Hours

Max. Marks: 100

- Note: 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
 - 2. VTU Formula Hand Book is permitted.
 - 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module -1	Μ	L	С	
Q.01	а	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$	7	L2	CO1	
	b	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing the order of integration.	7	L3	C01	
	С	Show that $\gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	6	L2	C01	
		OR			1	
Q.02	а	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates	7	L3	C01	
	b	Find by double integration, the area between the parabolas $y^2 = 4ax$	7	L2	CO1	
		and $x^2 = 4ay$.				
	С	Using Mathematical tools, write the code to find the area of an ellipse	6	L3	C05	
		by double integration $A = 4 \int_0^a \int_0^{\frac{b}{a}\sqrt{a^2 - x^2}} dy dx$.				
		Module-2			•	
Q. 03	а	Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1, -2, -1) in	7	L2	CO2	
		the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.				
	b	If $\vec{F} = \nabla(xy^3z^2)$, find <i>div</i> \vec{F} and <i>curl</i> \vec{F} at the point $(1, -1, 1)$	7	L2	CO2	
	С	Prove that the spherical coordinate system is orthogonal.	6	L2	CO2	
OR						
Q.04	а	Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and	7	L3	CO2	
		$z = x^2 + y^2 - 13$ at (2,1,2)				
	b	Show that the vector $\vec{F} = \frac{xi+yj}{x^2+y^2}$ is both solenoidal and irrotational.	7	L2	CO2	
	С	Using Mathematical tools, write the code to find the curl of	6	L3	CO5	

		$\vec{F} = xy^2\hat{\imath} + 2x^2yz\hat{\jmath} - 3yz^2\hat{k}$				
Module-3						
Q. 05	а	Let $V = R^3$ be a vector space and consider the subset W of V consisting	7	L2	CO3	
		of vectors of the form (a, a^2 , b), where the second component is the				
		square of the first. Is W a subspace of V?				
	b	Find the basis and the dimension of the subspace spanned by the	7	L2	CO3	
		vectors {(2, 4, 2), (1, -1, 0), (1, 2, 1), (0, 3, 1)} in V ₃ (R).				
	С	Find the kernel and range of the linear operator	6	L2	CO3	
		T (x, y, z) = (x + y, z) of $\mathbb{R}^3 \rightarrow \mathbb{R}^2$				
	T	OR	1	1		
Q. 06	а	Let $f(x) = 2x^2 - 5$ and $g(x) = x + 1$. Show that the function	7	L2	CO3	
		$h(x) = 4x^2 + 3x - 7$ lies in the subspace Span {f, g} of P ₂ .				
	b	Prove that the transformation $T; R^2 \rightarrow R^2$ defined by	7	L2	CO3	
		T(x, y) = (3x, x + y) is linear. Find the images of the vectors (1, 3)				
		and $(-1, 2)$ under this transformation.				
	С	Show that the functions $f(x) = 3x - 2$ and $g(x) = x$ are orthogonal in P_n	6	L2	CO3	
		with inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.				
		Module-4				
Q. 07 a Find an approximate value of the root of the equation $xe^x = 3$, using		7	L2	CO4		
		the Regula-Falsi method, carry out three iterations.				
	b	Using Newton's divided difference formula, evaluate $f(8)$ from the	7	L2	CO4	
		following				
		x 4 5 7 10 11 13				
		f(x) 48 100 294 900 1210 2028				
	C	$ = \int_{-\infty}^{1} \int_{-\infty}^{1} du u du d$	6	L3	C04	
		Evaluate $\int_0^\infty \frac{dx}{1+x^2} dx$ using the Trapezoidal rule by taking 6 divisions.				
0.00	L .	OR Caller Caller Caller	-	1.2	604	
Q. 08	a	Find the real root of the equation $\cos x = xe^{x}$, which is nearer to	'		L04	
		x = 0.5 by the Newton-Raphson method, correct to three decimal				
		places.				
	b	Given, $\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$,	7	L2	CO4	

		$\sin 60^0 = 0.8660$, find $\sin 48^0$ using Newton's forward interpolation			
		formula.			
	С	Evaluate $\int_0^3 \frac{1}{4x+5} dx$ by using Simpson's $1/3^{rd}$ rule by taking 7	6	L3	CO4
		ordinates.			
		Module-5			
Q. 09	а	By Taylor's series method, find the value of y at $x = 0.1$ and $x = 0.2$ to	7	L2	CO4
		5 places of decimals from $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$.			
	b	Using the Runge-Kutta method of fourth order, find $y(0.1)$ given that	7	L2	CO4
		$\frac{dy}{dx} = 3e^{x} + 2y, \ y(0) = 0, taking h = 0.1$			
	С	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$,	6	L2	CO4
		y(0.4) = 0.0795, $y(0.6) = 0.1762$ compute y at $x = 0.8$ by applying			
		Milne's method.			
		OR			
Q. 10	а	Using the modified Euler's method, find $y(0.1)$ given that $\frac{dy}{dx} = x^2 + y$	7	L2	CO4
		and $y(0) = 1$ take step $h = 0.05$ and perform two modifications in			
		each stage.			
	b	Using the Runge-Kutta method of fourth order, find $y(0.2)$ given that	7	L2	CO4
		$\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0.1) = 1.0912$, taking $h = 0.1$			
	С	Using Mathematical tools, write the code to find the solution of	6	L3	CO5
		$\frac{dy}{dx} = 1 + \frac{y}{x}$ at $y(2)$ taking h = 0.2. Given that $y(1) = 2$ by Runge-Kutta			
		4 th order method.			

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN

Second Semester B.E Degree Examination

Mathematics-II for Computer Science Engineering-BMATS201

TIME: 03 Hours

Max. Marks: 100

No	te:	1. Answer any FIVE full questions, choosing at least ONE question	from e	ach	
		module.			
		2. VTU Formula Hand Book is permitted.			
		3. M: Marks, L: Bloom S level, L: Course outcomes.	м	Т	
0.01	0	$\frac{\text{Module -1}}{1}$	7		
Q.01	d	Evaluate $\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} e^{x+y+z} dz dy dx$	<i>'</i>		COI
	b	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates.	7	L2	C01
	С	Show that $\beta(m,n) = \frac{\gamma(m)\gamma(n)}{\gamma(m)}$	6		CO1
		Show that $p(m,n) = \frac{\gamma(m+n)}{\gamma(m+n)}$		L2	
		OR	1		
Q.02	а	Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration	7	L2	CO1
	b	Using double integration find the area of a plate in the form of a	7	L3	C01
		anadrant of the ollings $\frac{x^2}{x^2} + \frac{y^2}{y^2} = 1$			
		quadrant of the empse $\frac{1}{a^2} + \frac{1}{b^2} = 1$			
	С	Write the codes to find the volume of the tetrahedron bounded by the	6	L3	CO5
		planes $x = 0$, $y = 0$ and $z = 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ using Mathematical			
		tools.			
		Module-2			
Q. 03	а	Find $\nabla \phi$, if $\phi = x^3 + y^3 + z^3 - 3xyz$ at the point (1, -1, 2)	7	L2	CO2
	b	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$ find <i>div</i> \vec{F} and <i>curl</i> \vec{F}	7	L2	CO2
			<u> </u>		
	С	Express the vector $\vec{A} = z\hat{\imath} - 2x\hat{\jmath} + y\hat{k}$ in cylindrical coordinates.	6	L2	CO2
		OR			
Q.04	а	Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1, -2, -1) in	7	L2	CO2
		the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.			
	b	Show that the spherical coordinate system is orthogonal	7	L3	CO2
	С	Using the Mathematical tools, write the codes to find the gradient of	6	L3	C05
	1			1	1

		$\phi = x^2 yz.$					
		Module-3					
Q. 05	а	Prove that the subset W = {(x, y, z) $x - 3y + 4z = 0$ } of the vector space R ³ is	7	L3	CO3		
		a subspace of R ³ .					
	b	Determine whether the matrix $\begin{bmatrix} -1 & 7 \\ 8 & -1 \end{bmatrix}$ is a linear combination of	7	L2	CO3		
		$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & -3 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$ in the vector space M ₂₂ of 2 × 2 matrices.					
	С	Find the matrix of the linear transformation T: $V_2(R) \rightarrow V_3(R)$ such	6	L2	CO3		
		that T $(-1, 1) = (-1, 0, 2)$ and T $(2, 1) = (1, 2, 1)$.					
		OR	_				
Q. 06	а	Show that the set $S = \{(1, 2, 4), (1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is linearly	7	L2	CO3		
		dependent.					
	b	Let P_n be the vector space of real polynomial functions of degree $\leq n$.	7	L2	CO3		
		Show that the transformation $T: P_2 \rightarrow P_1$ defined by					
		$T(ax^{2} + bx + c) = (a + b)x + c$ is linear.					
	С	Verify the Rank-nullity theorem for the linear transformation	6	L2	CO3		
		T: $V_3(R) \rightarrow V_2(R)$ defined by $T(x, y, z) = (y - x, y - z)$.					
		Module-4			•		
Q. 07	а	Find the real root of the equation $3x = \cos x + 1$ correct to three	7	L2	CO4		
		decimal places using Newton's Raphson method.					
	b	Find y at $x = 5$ if $y(1) = -3$, $y(3) = 9$, $y(4) = 30$, $y(6) = 132$ using	7	L2	CO4		
		Lagrange's interpolation formula.					
	С	Evaluate $\int_0^1 \frac{1}{1+x} dx$ by taking 7 ordinates and by using Simpson's 3/8	6	L3	CO4		
		rule.					
OR							
Q. 08	а	Find an approximate root of the equation $x^3 - 3x + 4 = 0$ using the	7	L2	C04		
		method of false position, correct to three decimal places which lie	l				
		between -3 and -2. (Carry out three iterations).	l				

	b	Using Newton's appropriate interpolation formula, find the values of	7	L3	CO4
		y at $x = 8$ and at $x = 22$ from the following table:			
		x 0 5 10 15 20 25			
		v 7 11 14 18 24 32			
		y , 11 11 10 1 1 0 1			
	С	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} dx$ by using the Trapezoidal rule by taking 7	6	L2	CO4
		ordinates.			
	ı	Module-5			
Q. 09	а	Solve $y'(x) = 3x + \frac{y}{2}$, $y(0) = 1$ then find $y(0.2)$ with $h = 0.2$ using	7	L2	CO4
		modified Euler's method.			
	b	Apply Runge-Kutta method of fourth order to find an approximate	7	L2	CO4
		value of y when $x = 0.2$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$.			
	С	Given $\frac{dy}{dx} = xy + y^2$, $y(0) = 1, y(0.1) = 1.1169, y(0.2) = 1.2773$,	6	L2	CO4
		y(0.3) = 1.5049 compute $y(0.4)$ using Milne's method.			
		OR			
Q. 10	а	Employ Taylor's series method to obtain approx. value of y at $x = 0.2$	7	L2	CO4
		for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.			
	b	Using the Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with	7	L2	CO4
		y(0) = 1 at $x = 0.2$.			
	С	Write the Mathematical tool codes to solve the differential equation	6	L3	CO5
		$\frac{dy}{dx} - 2y = 3e^x$ with y(0) = 0 using the Taylors series method at			
		x = 0.1(0.1)0.3.			