Third semester B.E. Degree Examinations, March/April 2024
Mechanics of Materials
Model Question paper.
Time; $\mathbf{3}$ hrs.
Max. Marks; 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M; Marks, L; Bloom's level, C; Course outcomes.

Module-1			M	L	C
Q. 1	a.	Define i) Young's modulus ii) Poisson's ratio iii) Secant modulus iv) Strain hardening	4	L1	CO1
	b.	Derive an expression for total deformation of a circular bar, when it is subjected to an axial force P	6	L2	CO1
	c.	A brass bar, having a cross-section area of $900 \mathrm{~mm}^{2}$, is subjected to axial forces as shown in fig $\mathrm{Q} 1 \mathrm{AB}=0.6 \mathrm{~m}$ $B C=0.8 \mathrm{~m}$ and $\mathrm{CD}=1.0 \mathrm{~m}$. Find the total elongation of the bar. Take $E=1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	10	L3	CO1
		Fig Q1			
OR					
Q. 2	a.	Derive an expression for relationship between Young's modulus, modulus of Rigidity and Poisson's ratio.	10	L2	CO1
	b.	Determine the change in length, breadth and thickness of a steel bar which is 5 m long, 40 mm wide and 30 mm thick and is subjected to an axial pull of 35 KN in the direction of its length Take $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio is 0.32 .	10	L3	CO1
Module-2					
Q. 3	a.	Explain the meaning of principal lanes and principal stresses. What is the value of shear stress on principal planes?	5	L2	CO2

| | b. | The state of stress in two dimensionally stressed bodies is as
 shown in fig Q3. Determine the Normal, Tangential stress,
 principal planes and principal stresses, maximum shear stress
 and their planes. | $\mathbf{L 3}$ | CO2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

		Fig Q6			
Module-4					
Q. 7	a.	Prove the relations $\frac{M}{I}=\frac{\boldsymbol{\sigma}}{\boldsymbol{Y}}=\frac{\boldsymbol{E}}{\boldsymbol{R}} \quad$ with usual notations.	10	L2	CO4
	b.	A simply supported beam 15 mmX 20 mm is 1.5 m long and it fails if a concentrated load of 425 N is applied at its center. Determine UDL can break a cantilever beam of same material 50 mmX 110 mm in section and 2 m long	10	L3	CO4
OR					
Q. 8	a.	A cast iron bracket subjected to bending has a cross-section of I- Form. The total depth of section is 350 mm and metal is 50 mm thick throughout, the top flange is 250 mm wide and bottom flange is 150 mm wide. Calculate the intensity of udl that can be supported by a cantilever beam of 3 m span if max tensile stress is limited to 175 MPa . Also find maximum compressive stress. Sketch the stress distribution.	20	L3	CO4
Module-5					
Q. 9	a	Derive the torsion formula, in the standard form $\frac{T}{J}=\frac{G \theta}{L}=\frac{\tau}{R}$ And list all the assumptions made while deriving the same.	10	L2	$\mathrm{CO5}$
	b	Find the diameter of the shaft required to transmit 60 KW at 150 rpm if the maximum torque is 25% of the mean torque for a maximum permissible shear stress of $60 \mathrm{MN} / \mathrm{m}^{2}$. Also find the angle of twist for a length of 4 m . Take $\mathrm{G}=80 \mathrm{GPa}$.	10	L3	CO5
OR					
Q. 10	a	Derive an expression for critical load in a column subjected to compressive load, when one end is fixed, and another end is free.	10	L2	CO5
	b	A 1.5 m long column has a circular cross section of 50 mm diameter. One of the ends of the column is fixed in direction and position and the other end is free. Take factor of safety as 3 , calculate the safe load using. i) Rankine's formula, take yield stress $=560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=\frac{1}{1600}$ for a pinned end. ii) Euler's formula, Young's modulus for C.I. $=1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	10	L3	CO5

