Third Semester B.E. Degree Examinations, March/April 2024

Material Science and Engineering (BME303)

Model Question Paper

Time; 3 hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M; Marks, BL; Bloom's level, CO; Course outcomes.

Module-1			M	BL	CO			
Q.1	a.	Calculate the APF for FCC and BCC unit cell in crystal structure.	10	L3	CO1			
	b.	Define Atomic bonding mention the types and explain them briefly.	10	L2	CO1			
OR								
Q.2	a.	Enumerate the type of crystal imperfections and explain briefly with a suitable sketch Grain boundry and Twin boundry defects.	10	L2	CO1			
	b.	Explain Briefly the plastic deformation by Slip and Twinning with a suitable sketch.	10	L2	CO1			
Module-2								
Q.3	a.	Draw neatly the Solid Solution Binary Phase Diagram of a Ni-Cu System and Explain briefly.	10	L3	CO2			
	b.	State and explain fick's 1 st and 2 nd law of diffusion. Also Discuss the factors that affect diffusion.	10	L2	CO2			
OR								
Q.4	a.	Draw the phase diagram which indicating two metals are completely soluble in liquid state and partially soluble in solid state.	10	L3	CO2			
	b.	Draw the iron-Carbon equilibrium diagram and label various phases present in it, also write the three invariant reactions occurring in the diagram, indicating the temperature and composition.	10	L3	CO2			
Module-3								
Q.5	a.	Draw neatly a labeled TTT diagram for eutectoid steel (0.8%C) and explain briefly the different microstructures obtained at various cooling rates.	10	L3	CO3			
	b.	Briefly explain the Mechanism of Solidification in metals with suitable sketch.	10	L2	CO3			
OR								
Q.6	a.	Briefly explain with a neat sketch the normalizing heat treatment process.	10	L2	CO3			

	b.	With neat sketches explain Austempering and Martempering heat treatment Processes.	10	L3	CO3			
Module-4								
Q.7	a.	With a neat flow chart, briefly explain the Powder Metallurgy process and its applications.	10	L2	CO4			
	b.	Enumerate the different Powder Production methods. With suitable sketch briefly explain the Atomization method.	10	L2	CO4			
OR								
Q.8	a.	With a suitable sketch briefly explain the Physical Vapour Deposition technique.	10	L2	CO4			
	b.	With a schematic diagram briefly explain the High Velocity Oxy-fuel Coating (HVOF) process.	10	L3	CO4			
Module-5								
Q.9	a.	With a neat sketch explain the production of composite by: (1) Filament winding process (ii) Bag molding process.	10	L2	CO5			
	b.	Enumerate the types of Cast iron and mention their compositions, properties and applications.	10	L3	CO5			
OR								
Q.10	a.	Briefly explain about the material selection charts and show the materials selection chart for Young's modulus (stiffness) and Density.	10	L3	CO5			
	b.	What are the factors affecting the selection of materials explain briefly.	10	L2	CO5			