Third semester B.E. Degree Examinations, March/April 2024

Basic Thermodynamics (BME304)

Model Question paper.
Time; 3 hrs.
Max. Marks; 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M; Marks, L; Bloom's level, C; Course Outcomes.

Module-1					
			M	L	C
Q. 1	a	State and explain Zeroth law of Thermodynamics.	4	L2	CO1
	b	The resistance of a platinum wire is found to be 11 ohms at ice point, 15.247 ohms at steam point and 27.949 ohms at zinc point $\left(419^{\circ} \mathrm{C}\right)$. Find the constants in the equation $\mathrm{R}=\mathrm{R}_{0}\left(1+\mathrm{AT}+\mathrm{BT}^{2}\right)$, where T is in ${ }^{0} \mathrm{C}$. Find the resistance at a temperature of $250^{\circ} \mathrm{C}$.	10	L3	CO1
	c	Define Thermodynamic work and Compare Heat and Work	6	L4	CO1
OR					
Q. 2	a	What is Thermometric property and explain Celsius temperature scale.	6	L2	CO1
	b	Derive an equation for work done during an Adiabatic process	6	L3	CO1
	c	One kg of certain fluid is contained in system at a pressureof 10 bar. The fluid is allowed to expand reversibly untill the volume becomes twice the initial volume according to the law $\mathrm{PV}^{2}=\mathrm{C}$. The fluid is then cooled reversibibly at constant pressure untill the piston regains its original position. Heat is then supplied with the piston firmly locked in position untill the pressure rises to the original value. Calculate the net work done by the fluid for an initial volume of $0.05 \mathrm{~m}^{3}$.	8	L3	CO1
Module-2					
Q. 3	a	Explain Briefly Joule's paddle wheel experiment	6	L2	CO2
	b	State and explain the first law of Thermodynamics for a closed system undergoing a cyclic process.	4	L2	CO2
	c	Air initially at 60 KPa pressure, 800 K temperature and occupying a volume of $0.1 \mathrm{~m}^{3}$ is compressed isothermally until the volume is halved(half) and after that, it goes further compression at constant pressure till the volume is halved again. Sketch the process on a P-V diagram and make calculations for total work done and total heat interaction for the processes. Assume ideal gas behavior. Take $\mathrm{C}_{\mathrm{p}}=1.005$ $\mathrm{kJ} / \mathrm{kgK}$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$	10	L3	CO2
OR					
Q. 4	a.	Derive Steady Flow Energy Equation for an open system using First law of Thermodynamics	10	L3	CO2
	b.	A steam turbine receives steam with a flow rate of $900 \mathrm{~kg} / \mathrm{min}$ and experiences a heat loss of $840 \mathrm{KJ} / \mathrm{min}$. The exit pipe is 3	10	L3	CO2

| | | $\begin{array}{l}\text { meters below the level of the inlet pipe. Find the power } \\ \text { developed by the turbine if the pressure decreases from 62 bar } \\ \text { to 9.86 Kpa, Velocity increases from 30.5 m/s to 274.3 m/s, } \\ \text { internal energy decreases by 938.8 KJ/Kg and Specific Volume } \\ \text { increases from 0.058 } \mathrm{m}^{3} / \mathrm{Kg} \text { to } 13.36 \mathrm{~m}^{3} / \mathrm{Kg} .\end{array}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Qodule 3 | | | | |$]$

	\mathbf{a}	Explain the following; 1) Maxwell's relations 2) Clausius-Clapeyron equation	$\mathbf{1 0}$	$\mathbf{L 2}$	$\mathbf{C O 5}$
	Q.10	\mathbf{b}	State and explain Dalton's law of Partial pressure and Amagat's law of additive volumes.	$\mathbf{6}$	$\mathbf{L 2}$
	CO5				
	c	Explain generalised Compressibility Chart	$\mathbf{4}$	$\mathbf{L 2}$	$\mathbf{C O 5}$

END ----

