Model Question Paper 1 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination MACHINING SCIENCE & METROLOGY

TIME: 03 Hours Note: 01, A

Max. Marks: 100

	1	Iux. Mui	D. 100
Note: 01. Answer any FIVE full questions choosing at least ONE question	from each N	IODULE	
	*Bloom's		
Module -1	Taxonomy	Marks	CO

		Module -1	Taxonomy Level	Marks	CO
Q.01	a	With a neat sketch explain the single point cutting tool geometry.	L2	7	CO1
	b	Sketch the merchant circle diagram. Write the assumptions made	L3	7	CO1
		and derive the expression for chip thickness ratio.			
	c	Describe the orthogonal and oblique cutting.	L2	6	CO1
		OR	L		
Q.02	a	Draw the neat diagram of lathe and name the parts.	L2	7	CO1
	b	A 50mm bar of steel was turned at 28 rpm and tool failure	L3	7	CO1
		occurred after 10mins. The speed was changed to 232 rpm and			
		tool failed in 60mins of cutting time. Calculate the cutting speed			
		to obtain 30mins of tool life.			
	c	Explain any three operations of the lathe.	L2	6	CO1
		Module-2			
Q.	a	With a neat sketch explain column and knee type milling	L2	7	CO2
03		machine.		-	~~~
	b	With a neat sketch explain the operations of milling machines.	L2	6	CO2
	c	What is indexing and discuss the need of indexing.	L3	7	CO2
0.04	-	OR	10	7	CON
Q.04	a	Explain the driving mechanism of snaper.	L2	1	
	b	With a neat sketch, explain the radial drilling machine.	L2	6	CO2
	c	Explain any three operations of drilling.	L3	7	CO2
		Module-3 With a past skatch explain the heat concretion zone in motol	10	7	CO2
Q. 05	а	with a near sketch, explain the near generation zone in metal	L2	/	005
00	h	Cutting.	1.2	6	CO3
	D	Define tool life. Discuss the parameters which influence the tool	L2	0	005
		Discuss the different wear mechanisms	10	7	CO2
	C	Discuss the different wear mechanisms.	LZ	1	005
0	9	Explain the properties of cutting fluids	1.2	7	CO3
06	a	Explain the properties of earling fluids.	• <i>••</i>	/	
	b	List the different types of tool materials and explain them.	L2	6	CO3
	c	Define machinability and discus the factors affecting	L2	7	CO3
		machinability.			
		Module-4			
Q. 07	a	Define standards. List and explain the different standards.	L2	7	CO4
	b	With a neat sketch, explain international prototype meter.	L2	5	CO4
	c	What is line and end standard? Explain wringing phenomenon.	L3	8	CO4
		OR			

Q. 08	a	Define fit. Describe the types of fit and their designation.	L2	7	CO4
	b	Discuss shaft based and hole based system of fit.	L2	5	CO4
	c	What is the purpose of limit system?	L3	8	CO4
Module-5					
Q .	a	With a neat sketch, explain Taylors principle in the design of	L2	7	CO5
09		limit gauges.			
	b	With a neat sketch, explain double end and single end plug	L2	7	CO5
		gauges.			
	c	With a neat sketch, explain snap gauges.	L2	6	CO5
		OR			
Q. 10	a	Define comparator. Explain reed type comparator.	L2	7	CO5
	b	With a neat sketch, explain sigma comparator.	L2	7	CO5
	c	With a neat sketch explain sin bar.	L2	6	CO5

Model Question Paper 2 with effect from 2022-23 (CBCS Scheme)

USN

Fourth Semester B.E. Degree Examination MACHINING SCIENCE & METROLOGY

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any FIVE full questions choosing at least ONE question f	from each M	ODULE	
	* лі 1		

		Module -1	*Bloom's Taxonomy Level	Marks	со
Q.01	a	Explain briefly the mechanics of chip formation process.	L2	6	CO1
	b	Explain the Merchants circle diagram for the analysis of power	L3	8	CO1
		requirement for the machine tool.			
	c	In an orthogonal cutting process, the following data were	L3	6	CO1
		obtained: Chip length obtained = 96mm, uncut chip length =			
		240mm, Rake angle used = 20° , Depth of cut = 0.6mm,			
		Horizontal component of cutting force = $2400N$ and vertical			
		component of cutting force = 240 N. Determine for the given			
		data:			
		a) Shear Plane angle			
		b) Chip thickness			
		c) Friction angle			
		d) Resultant cutting force.			
	1	OR		1	T
Q.02	a	Briefly discuss the broad classification of lathes.	L2	6	CO1
	b	With neat sketches, explain the tool layout for producing a	L2	8	CO1
		hexagonal bolt on a capstan lathe.			
	c	Explain clearly the difference between capstan and turret lathe.	L2	6	CO1
	1	Module-2		_	
Q.	a	Explain with neat sketches Up milling and down milling methods	L2	6	CO2
03		of milling operation. Also discuss the significance of the both.			
	b	With a neat sketch, explain the vertical spindle column and knee	L2	8	CO2
		milling machine.			
	c	Use compound indexing method for calculating the index crank	L2	6	CO2
		movement to divide the periphery of a job into 87 divisions.			
		OR		1	~~~
Q.04	a	With a neat sketch, explain crank and slotted link quick return	L2	6	CO2
	-	mechanism			~ ~ ~ ~
	b	With neat sketches, explain the different operations that are	L2	8	CO2
		performed on a drilling machine.		_	
	c	Briefly discuss the classification of grinding machines.	L2	6	CO2
		Module-3	1.0		GOA
Q.	a	With a neat sketch, explain the different heat zones that are	L2	6	C03
05	-	present during the metal cutting process.			0.00
	b	With a neat sketch, explain the Tool-work thermocouple	L2	8	CO3
		technique used for measurement of cutting temperature.			
	C	Briefly explain the Wear mechanisms of cutting tools.	L2	6	CO3
		OR			

Q. 06	a	Discuss the factors that affect the cutting parameters on tool life.	L2	7	CO3
	b	A 50mm bar of steel was turned at 284 rpm and tool failure	L3	7	CO3
		occurred after 10min. The speed was changed to 232 rpm and the			
		tool failed in 60 min of cutting time. What cutting speed should			
		be used to obtain 30 min of tool life?			
	c	Discuss the fundamental properties of a cutting fluid.	L2	6	CO3
-		Module-4			
Q.	a	What is metrology? State and explain the objectives of	L2	6	CO4
07		metrology.			
	b	Discuss the following standards of measurement:	L2	8	CO4
		1. Line standard			
		2. Wave length standard			
		3. End standard			
	c	Distinguish clearly between 'Line standards' and 'End standard'.	L2	6	CO4
		Give examples of the standards.			
	-	OR	1	1.	
Q.	a	Define the following terms:	L2	6	CO4
08		1.Limits			
		2. Fits			
		3. Tolerance			
		4. Fundamental deviation			
	b	Discuss the different types of fits and their designation with neat	L2	8	CO4
		sketches.			
	c	Determine the tolerance on the hole and shaft for a precision	L3	6	CO4
		running fit designated 50H7 g6. Given			
		1. 50mm lies between $30 - 50$ mm			
		2. i (microns) = 0.45 (D) ^{1/3} + 0.001 D			
		3. Fundamental deviation for 'H' hole $= 0$			
		4. Fundamental deviation for 'g' shaft = $-2.5 D^{0.34}$			
		5. IT7 = 16 i			
		6. $IT6 = 10 i$			
		State the actual maximum and minimum sizes of the hole and			
		shaft and maximum and minimum clearances.			
		Module-5			
Q.	a	What are GO and NOGO gauges? Explain how Taylor's	L2	6	CO5
09		principle is used in designing them.			
	b	Sketch and explain any two types of plug and ring gauges.	L2	8	CO5
	c	Explain briefly the different gauge tolerances.	L2	6	CO5
		OR			
Q.	a	Explain the basic characteristics and classification of	L2	6	CO5
10		comparators.			
	b	With a neat sketch, explain the Johansson Mikrokator type	L2	8	CO5
		comparator.			
	c	Explain the principle and working of a sine bar.	L2	6	CO5