Model Question Paper-1with effect from 2022-23 (CBCS Scheme)
USN \square

Fourth Semester B.E. Degree Examination FLUID MECHANICS

TIME: 03 Hours

Max. Marks: 100
Note: 01.Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. M: Marks, L: Blooms Level, C: Course outcomes
03. Assume missing data suitably

Module-1		M	L	C
Q. 01	a Define the following properties of fluids and mention their SI Units: (i) Weight Density (ii) Surface Tension (iii) Kinematic Viscosity	6	L2	CO1
	b The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6poise. The shaft is of diameter 0.4 m . It rotates at 190 rpm . Calculate the power lost in the bearing for a sleeve length of 90 mm . The thickness of the oil film is 1.5 mm .	8	L3	CO1
	c A simple manometer is used to measure the pressure of oil ($\mathrm{s}=0.8$) flowing in a pipeline. Its right limb is open to the atmosphere and the left limb is connected to the pipe. The centre of the pipe is 90 mm below the level of mercury in the right limb. If the difference of mercury level in the two limbs is 150 mm , determine the absolute pressure of oil in the pipe in KPa.	6	L3	CO1
OR				
Q. 02	a Distinguish between: (i) Absolute pressure (ii) Gauge pressure (iii) Gauge vacuum (iv) Atmospheric pressure. Indicate their relative positions on a chart.	6	L2	CO1
	b Derive an expression for the total pressure and the depth of centre of pressure for an inclined surface submerged in water.	8	L3	CO1
	c A square plate of diagonal 1.5 m is immersed in water with its diagonal vertical and upper corner 0.5 m below the free surface of water. Find the hydrostatic force on the plate and the depth of centre of pressure from free surface of water.	6	L3	CO1
Q.03 a Define the following types of flow: (i) (ii) Steady and unsteady flow (ii) Compressible and Incombulent flow		6	L2	CO2
	b Derive the general three dimensional continuity equation in Cartesian coordinates and then reduce it to the continuity equation for steady, three dimensional incompressible flow.	8	L3	CO 2
	c The velocity components in a two dimensional flow field for an incompressible fluid are expressed as	6	L3	CO2

		$\begin{aligned} & u=\frac{y^{3}}{3}+2 x-x^{2} y \\ & v=x y^{2}-2 y-\frac{x^{3}}{3} \end{aligned}$ Obtain an expression for stream function			
OR					
Q. 04	a	Define Reynolds Number. Explain its significance in fluid flow	4	L2	CO2
	b	Derive an expression for the velocity distribution and shear stress distribution for the viscous flow through a circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.	8	L3	CO2
		Water at $15^{\circ} \mathrm{C}$ flows between two large parallel plates at a distance of 1.6 mm apart. Determine (i) the maximum velocity (ii) the pressure drop per unit length and (iii) the shear stress at the walls of the plates if the average velocity is $0.2 \mathrm{~m} / \mathrm{s}$. the viscosity of water at $15^{\circ} \mathrm{C}$ is given as 0.01 poise.	8	L3	CO2
		Module-3			
Q. 05	a	Derive Euler's equation of motion along a stream line. Obtain Bernoulli's equation from Euler's equation. Mention the assumptions made.	8	L3	CO3
	b	Derive an expression for discharge over a triangular notch.	6	L3	CO3
	c	A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is $17.658 \mathrm{~N} / \mathrm{cm}^{2}$ and the vacuum pressure at the throat is 30 cm of Hg . Find the discharge of water through venturi meter. Take $\mathrm{C}_{\mathrm{d}}=0.98$.	6	L3	CO3
		OR			
Q. 06	a	Using Impulse Momentum equation, derive the expressions for the force exerted by the jet of fluid on a vane with the following cases: (i) Flat fixed vane (ii) Symmetrical fixed curved vane with the jet striking the vane at the centre	6	L3	CO3
	b	Derive Darcy - Weisbach equation for the loss of head due to friction in a pipe flow.	8	L3	CO3
	c	In a pipe of diameter 400 mm and length 100 mm , water is flowing at a velocity of $3.5 \mathrm{~m} / \mathrm{s}$. Find the head loss due to friction using (i) Darcy Weisbach formula (ii) Chezy's formula for which $\mathrm{c}=55$.	6	L3	CO3

Model Question Paper-2with effect from 2022-23 (CBCS Scheme)

USN \square

Fourth Semester B.E. Degree Examination FLUID MECHANICS

TIME: 03 Hours

Max. Marks: 100
Note: 01.Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. M: Marks, L: Blooms Level, C: Course outcomes
03. Assume missing data suitably

		velocity.			
		A lubricating oil of viscosity 1 poise and specific gravity 0.9 is pumped through a 30 mm diameter pipe. If the pressure drop per meter length of pipe is 20 kPa , Determine (i) the mass flow rate in $\mathrm{kg} / \mathrm{min}$, (ii) the shear stress at the pipe wall, (iii) the Reynolds number of flow, (iv) the power required per 50 m length of the pipe to maintain the flow.	10	L3	CO2
Module-3					
Q. 05	a	Which are the forces considered to be acting on the fluid whenever the fluid is in motion?	4	L1	CO3
	b	Derive the expression for the rate of flow of fluid through a horizontal Venturimeter	8	L3	CO3
		A pipeline carrying oil of specific gravity 0.87 changes in diameter from 200 mm at a position A to 500 mm at a position B which is 4 m at higher level. If the pressure at A and B are $10 \mathrm{~N} / \mathrm{cm}^{2}$ and $6 \mathrm{~N} / \mathrm{cm}^{2}$ respectively and discharge is 2001 litres $/ \mathrm{s}$, determine the loss of head and indicate the direction of fluid flow.	8	L3	CO 3
OR					
Q. 06	a	Write the Momentum equation. Mention the different applications of Momentum equation.	6	L2	CO3
	b	Derive Chezy's formula for the head loss due to friction in a pipe.	8	L3	CO3
	c	Derive an expression for the loss of head due to to the sudden enlargement in the pipe.	6	L3	CO3
Module - 4					
Q. 07	a	Find the displacement thickness and the momentum thickness for the velocity distribution in the boundary layer given by $\frac{u}{U_{\infty}}=\frac{y}{\delta}$, where u is the velocity at a distance y from the plate and $\mathrm{u}=\mathrm{U}$ at $\mathrm{y}=\delta$, where $\delta=$ boundary layer thickness. Also calculate the value of $\frac{\delta^{*}}{\theta}$.	6	L3	CO4
	b	Explain the following terms: (i) Drag (ii) Lift (iii) Friction drag (iv) Pressure drag.	8	L2	CO4
	c	A man descends to the ground from an aero plane with the help of a parachute which is hemispherical having a diameter of 4 m against the resistance of air with a uniform velocity of $25 \mathrm{~m} / \mathrm{s}$. Find the weight of the man if the weight of the parachute is 9.81 N . Take $\mathrm{C}_{\mathrm{D}}=0.6$ and density of air $=1.25 \mathrm{~kg} / \mathrm{m}^{3}$.	6	L3	CO4
OR					

