USN

Model Question Paper 2022-23 (CBCS Scheme) Fifth Semester B.E. Degree Examination (Mechanical Engineering)

TURBOMACHINES

TIME: 03 Hours

Max. Marks: 100

BME502

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE

		Module -1	Bloom's Taxonomy Level	Marks	СО
Q.01	a	Distinguish between turbo machines with positive displacement	L2	10	CO1
	1	machines.			
	D	 liquid water of standard density is 70 %. Suppose that the pressure of water increased by 4 bar. Find Isentropic change in enthalpy Actual change in total enthalpy Change in total enthalpy of water Power input to water if flow rate 30 kg/s. 	L3	10	CO1
	1	OR	1		
Q.02	a	Explain main parts and classifications of turbo machines.	L2	6	CO1
	b	Distinguish between static and stagnation pressure.	L2	4	CO1
	C	Derive an expression for polytropic efficiency for expansion	L3	10	CO1
		Module-2			
Q.03	a	Define utilization factor and degree of reaction. Establish the	L3	10	CO2
	h	The following data refere to a hydraulia reaction turking of radial			
		type. a) Head of the water = 160 m, b) Rotor blade angle at energy = 119°, c) Diameter at entry = 3.65 m, d) Diameter at exit = 2.45 m, e) Discharge angle at exit = 30°, radial with a velocity of 15.5 m/s, f) Radial component at inlet = 10.3 m/s. Find the power developed in KW, Degree of reaction and utilization factor for a flow rate of 10 m ³ /s.	L3	10	CO2
		OR			
Q.04	a	For a 50% reaction steam turbine, show that $\alpha_1 = \beta_2$ and $\alpha_2 = \beta_1$, where α_1 and β_1 are the inlet angles of fixed and moving blades, α_2 and β_2 are the outlet angles of fixed and moving blades Derive an expression for maximum efficiency of reaction steam turbine and Show That $n_{b_{max}} = \frac{2\cos^2 \alpha_1}{1 + \cos^2 \alpha_1}.$	L3	10	CO2
	b	In a Parson turbine the axial velocity of steam flow is 0.5 times the mean blade speed. The outlet angle of the blade is 20° , the diameter of the blade ring is 1.3 m and the rotational speed is 3000 rpm. Determine the inlet blade angle, power developed for the steam flow is 65 kg/s and the isentropic enthalpy drop if the stage efficiency is 80 %.	L3	10	CO2
	1	Module-3			
Q. 05	a	Derive an expression for maximum blade efficiency equation for curties turbine.	L2	10	CO3
	b	A single stage impulse turbine has a diameter of 1.5 m and running	L3	10	CO3

		at 3000 RPM the nozzle angle is 20 degrees speed ratio is 0.45 the			
		ratio of relative velocity at outlet to that inlet is 0.9 the outlet angle			
		of the blade is 3 degrees less than the inlet angle 6 kg /s. Draw the			
		velocity diagram find velocity power.			
		OR			
Q. 06	a	Explain in detail significance of compounding steam turbine and	т 2	10	CO3
		types of compounding		10	05
	b	Steam flows through the nozzle with a velocity of 450 m/s at a			
		direction which is inclined at an angle of 16 o to the plane tangent.			
		Steam comes out of the moving blades with a velocity of 100 m/s			
		in the direction of 110 o with the direction of blade motion. The	L3	10	CO3
		blades are equiangular and the steam flow rate is 10 kg/s.			
		Find i) Power developed ii) the power loss due to friction iii)			
		Axial thrust iv) Blade efficiency and v) Blade coefficient.			
	-	Module-4			1
Q. 07	a	Derive an expression of Hydraulic efficiency of hydraulic impulse	L2	10	CO4
		Turbine		10	
	b	Pelton wheel has to be designed for the following data: power			
		developed =5880kW, Net head available=300m, Speed=550RPM,			
		ratio of jet diameter to wheel diameter=1/10 and overall	L3	10	CO4
		efficiency=85%. Find the number of jets, diameter of jet, diameter			
		of the wheel and the quantity of water required. Assume $Cv = 0.98$,			
		$\phi = 0.46.$ overall efficiency = 85%.			
0.00	_	UR	1.2	10	C04
Q. 08	a h	Sketch and explain parts and working of Kaplan turbine.	LZ	10	04
	U	in a Francis turbine, the discharge is fadial. The blade speed at $\frac{1}{10}$			
		The radial velocity of flow is constant and equal to			
		25 m/s Waterflowsattherateof() $8 m/s$. The utilization factor is () 82	L3	10	CO4
		Find i) Fuler's head ii) Power developed iii) Inlet blade angle iv)			
		Degree of reaction(R) Draw the velocity triangles			
		Module-5			
0.09	a	Define explain, and write an expression for the following			
X • • • •		efficiencies of centrifugal pump; i) Mechanical efficiency. (ii)			
		Manometric efficiency, (iii) overall efficiency and (iv) Hydraulic	L2	10	CO5
		efficiency.			
	b	A centrifugal compressor runs at a speed of 15000 RPM and			
		delivers 30 kg per second exit radius is 0.35 relative velocity and			
		when angles at exit are 100 m/s and 75 degrees assuming axial inlet	т э	10	COF
		stagnation temperature and power as 300 Kelvin and 1 bar	LJ	10	05
		calculate the torque, power required and work done take CP is			
		equal to 1.005 KJ / KG.			
		OR			
Q. 10	a	Explain the following heads of a centrifugal pump: (i) Suction			
		head, (ii) Delivery head, (iii) Static head, (iv) Manometer of head	L2	10	CO5
		(v) Total or gross or effective head.			
	b	A centrifugal pump is running at 100 rpm. The outlet vane angle of			
		the impeller is 30 o and velocity of flow rate at outlet is 3 m/s. The			
		pump is working against a total head of 30 m and the discharge	T 2	10	COF
		through the pump is 0.3 m3 /s. If the manometric efficiency is 75 $\%$	LJ	10	005
		determine a) Diameter of the impeller b) width of the impeller at			
		outlet.			