USN

Model Question Paper 2022-23 (CBCS Scheme) Fifth Semester B.E. Degree Examination (Mechanical Engineering) THEORY OF MACHINES

TIME: 03 Hours

Max. Marks: 100

BME503

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE

		Module -1	Bloom's Taxonomy Level	Marks	СО		
Q.01	a	Define the following: (1) Mechanism (ii) Machine (iii) Link	т 2	10	COI		
		(iv) Inversion (v) Degree of freedom	1.12	10	COI		
	b	Explain any three inversions of four-bar kinematic chain, with neat sketch.	L3	10	CO1		
	OR						
Q.02	a	Explain with a neat diagram, the crank and slotted lever mechanism	L2	6	CO1		
	b	Distinguish between machine and structure	L2	4	CO1		
	c	In a Slider crank mechanism, the crank OB is 30 mm long and the connecting rod BC=120 mm long. The crank rotates at a uniform speed of 300 rpm clockwise about crank position \angle BOC=60 degree, draw the configuration and find (i) Velocity of position C and angular velocity of connecting rod BC (ii) Acceleration of Piston C and angular acceleration of connecting rod BC.	L3	10	CO1		
	Module-2						
Q.03	a	The turning moment diagram for a multi cylinder engine has been drawn to a scale of 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean resistance line taken in order from one end are as follows +52, -124, +92, -140, +85 -72 and +107 mm ² , when the engine is running at a speed of 600 rpm. If the total fluctuation of speed is not to exceed ±1.5 of the mean, find the necessary mass of the flywheel of radius 0.5 m.	L3	10	CO2		
	b	Obtain an expression for the Mass and Hoop stress developed in	L3	10	CO2		
		the rim of fly wheel					
Q.04	a	For the mechanism shown in fig find the required input torque for static equilibrium. The length of OA and AB are 250 mm and 650 mm respectively. F= 500 N	L3	10	CO2		
	b	When the crank is 45 degree from the inner dead centre on the down stroke, the effective steam pressure on the piston of a vertical steam engine is 2.5 bars. The diameter of the cylinder = 0.75 m, Stroke of the piston = 0.50 m and length of the connecting rod = 1 m. Determine the torque on the crank shaft, if the engine runs at 350 rpm and the mass of the reciprocating parts is 200 kg.	L3	10	CO2		

		Module-3			
Q. 05	a	Derive the expression for length of path of contact and arc of path		10	GO1
		of contact for involute gears.	L2	10	CO3
	b	Two gear wheel mesh externally and are to give a velocity ratio of			
	~	3. The teeth are of involute formal module 6mm and standard			
		addendum one module. Pressure angle = 18° . Pinion rotates at 90			
		rpm. Find (i) Number of teeth on each wheel so that interference is	L3	10	CO3
		just avoided (ii) Length of path of contact (iii) Length of arc of			
		contact (iv) Maximum velocity of sliding between teeth.			
		(v) Number of pair of teeth in contact			
		OR			
Q.06	a	Explain in details any 3 types of gear train with a neat sketch	L2	10	CO3
	b	An epicyclic gear train of sun and planet type is shown in Fig. The			
		pitch diameter of internally ted ring D is approximately 228 mm			
		and the module is 4 mm. When the ring is stationary, the spider A			
		which carries three planet wheels C of equal size is to make one			
		revolution for every five revolutions of the spindle carrying the sun			
		wheel B. Determine suitable number of teeth for the entire wheel			
		and the exact pitch orde diameter of ring D. If a torque of 30 Nm is			
		supplied to the sun-wheel B, what will be the torque required to			
		keep the ring stationary?	L3	10	CO3
		Sun wheel			
		Зини нимее			
		Spider Arm			
		Module-4			
Q. 07	a	Derive an expression for equilibrium speed of porter governor.	т э	10	CO4/
				10	CO5
	b	The arms of a Porter governor are 300mm long. The upper arms			
		are pivoted on the axis of rotation and the lower arms are attached			
		to the sleeve at a distance of 35 mm from the axis of rotation. The			
		mass of the sleeve is 54kg and the mass of each ball is 7 kg.	L3	10	CO4/
		Determine the equilibrium speed when the radius of rotation of the	20		CO5
		ball is 225mm. What will be the range of speed for this position, if			
		the frictional resistance to the motion of the sleeve is equivalent to			
		a force of 30N at the sleeve?		L	
0.00					
Q. 08	a	The radius of rotation of the balls of a Hartnell governor is 80 mm			
		at the minimum aread of 200 n n m. Neclesting anovity offect		1	
		at the minimum speed of 300 r.p.m. Neglecting gravity effect,			
		at the minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve has lifted by 60 mm. also determine the initial compression of the spring, the governor effort	Т Э	10	CO4/
		at the minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve has lifted by 60 mm. also determine the initial compression of the spring, the governor effort and the power. The particulars of the governor are given below:	L2	10	CO4/ CO5
		at the minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve has lifted by 60 mm. also determine the initial compression of the spring, the governor effort and the power. The particulars of the governor are given below: Length of ball arm = 150 mm. length of sleeve arm = 100 mm	L2	10	CO4/ CO5
	-	at the minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve has lifted by 60 mm. also determine the initial compression of the spring, the governor effort and the power. The particulars of the governor are given below: Length of ball arm = 150 mm, length of sleeve arm = 100 mm, mass of each ball = 4 kg and stiffness of the spring = 25 N/mm	L2	10	CO4/ CO5
	h	at the minimum speed of 300 r.p.m. Neglecting gravity effect, determine the speed after the sleeve has lifted by 60 mm. also determine the initial compression of the spring, the governor effort and the power. The particulars of the governor are given below: Length of ball arm = 150 mm, length of sleeve arm = 100 mm, mass of each ball = 4 kg and stiffness of the spring = 25 N/mm.	L2	10	CO4/ CO5

Module-5					
Q. 09	a	Define the terms used in vibration system			
		i. Natural frequency			
		ii. Resonance			
		iii. Amplitude of vibration	L2	10	CO6
		iv. SHM			
		v. Damping			
	b	Derive an expression of natural frequency for simple pendulum	L3	10	CO6
OR					
Q. 10	a	Define logarithmic decrement. Obtain an expression for	т 2	10	CO6
		logarithmic decrement.		10	
	b	Explain in detail with a neat sketch different types of damping	13	10	C06
		system.	LJ	10	