Model Question Paper-1/2 with effect from 2022-23 (CBCS Scheme)

USN					
CBIT					

Fourth Semester B.E. Degree Examination Subject Title: Robot Operating System

TIME: 03 Hours Max. Marks: 100

Note: 01. 02. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	*Bloom's Taxonomy Level	CO's	Marks
Q.01	a	How does the concept of ROS reflect various philosophical	L2	CO1	10
		perspectives			
	b	Illustrate the ROS graph depicting the interaction between nodes	L2	CO1	10
		in a fetch-an-item robot system,			
		OR			
Q.02	a	Describe the concepts of Names, Namespaces, and Remapping in ROS	L2	CO1	10
	b	Elaborate on ROS catkin, Workspaces, and Packages, using an	L2	CO1	10
		illustrative example to demonstrate how these components			
		streamline the development and organization of robotic software			
		projects.			
0.02		Module-2	1.2	CO2	10
Q. 03	a	Describe the components of robot subsystems and how ROS	L2	CO2	10
		manages them. Additionally, discuss actuation as it pertains to mobile platforms.			
	b	Design a program to ROS node that prints the distance to an	L3	CO2	10
		obstacle directly in front of the robot.		002	10
		OR			
Q.04 a		Explain the process of creating packages within the ROS	L3	CO2	10
		environment. Additionally, design programs for a robot in ROS			
		to control red and green lights.			
	b		L2	CO2	10
		Explain the different robots which used in ROS environment			
		Module-3			
Q. 05	a	Describe the maps in ROS and how to edit the maps and record	L2	CO3	10
ļ		the data.			
	b	How to Build maps in ROS what are the different algorithms to	L2	CO3	10
		build maps in ROS			10
		OR			
Q. 06	a	How does a map server function within the context of ROS, and	L2	CO3	10
		what role does it play in robot navigation?			
	b	How does ROS facilitate the process of localizing a robot within	L2	CO3	10
		a map, and what strategies are employed to achieve accurate			
		initial localization?			

		Module-4			
Q. 07	a	Write a program for keyboard-Teleop-bot that listens for keystrokes and publishes it console	L3	CO3	10
	b	What is velocity Ramp explain with example	L3	CO3	10
		OR			
Q. 08	a	Discuss the implementation of line-finding algorithms and the integration of sensor data for line detection	L3	CO4	10
	b	What is proportional Controller and explain how it is useful in follower robot navigation	L3	CO4	10
		Module-5			
Q. 09	a	List the steps involved in ROS to control a TortoiseBot. Explain the importance of ROS message interface	L2	CO4	10
	b	Explain the steps involved in modeling robot in ROS environment. Also write a program to buildTortoiseBot chassis	L3	CO4	10
OR					
Q. 10	a	Explain the two tags that need to be added to simulate a TortoiseBot in Gazebo environment	L2	CO4	10
	b	Write the code for the TortoiseBot front caster and joint	L3	CO4	10

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.