USN

Fourth Semester B.E. Degree Examination
 Robot Kinematics, Dynamics \& Control

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Q.1			(a)Derive the Denavit-Hartenberg (DH) parameters for a 2 DOF planar robotic manipulator and write the corresponding homogeneous transformation matrices.	10
	(b)For the PUMA manipulator shown below, write the D-H notations and matrices. Q	10	L2	

		Module - 3		
5	(a)	Describe the effects of friction and the actuator's rotor inertia on the dynamics of a robotic system. How can these factors be modeled and mitigated in control systems?		
	(b)	Explain the method for evaluating joint coordinates and torques in a two-link robotic manipulator. Provide the necessary equations.		
6	(a)	Derive the dynamic equations of motion for a general 6 -axis robotic manipulator using the Newton-Euler formulation.		
	(b)	Develop the dynamic model for a planar robot with 2 degrees of freedom using the Lagrangian approach.		
		Module - 4		
Q. 7	(a)	A single-link robot with a rotary joint is motionless at $8=15$ degrees. It is desired to move the joint in a smooth manner to $9=75$ degrees in 3 seconds. Find the coefficients of a cubic that accomplishes this motion and brings the manipulator to rest at the goal. Plot the position, velocity, and acceleration of the joint as a function of time.	10	L3
	(b)	How is a circular path planned in Cartesian space for a robotic manipulator? Describe the equations used and the challenges involved.	10	L2
		OR		
Q. 8	(a)	The trajectory of a particular joint is specified as follows: Path points in degrees: $10,35,25,10$. The duration of these three segments should be $2,1,3$ seconds, respectively. The magnitude of the default acceleration to use at all blend points is 50 degrees/second2. Calculate all segment velocities, blend times, and linear times.	10	L3
	(b)	Explain the concepts of velocity and positional control in the context of trajectory planning. How are these controls implemented?	10	L4
		Module - 5		
Q. 9	(a)	Explain the concepts of point-to-point control and continuous path control in robotics. How do they differ, and what are typical applications for each?	10	L4
	(b)	Discuss the basics of feedback devices in robotic control systems, including encoders, resolvers, and LVDTs. How do they function and what are their roles?	10	L3
		OR		
Q. 10	A	Describe the differences between open-loop and closed-loop control techniques in robotic systems. Provide examples of when each technique might be used.	10	L4
	B	Describe how PD and PID controllers can be used to control a single-link manipulator. Include the equations used and discuss their performance in terms of stability and accuracy.	10	L4

