Model Question Paper-I

Fifth Semester B.E Degree

Course Title: Digital VLSI Design

Course Code:BVL503

Duration: 03Hours

Max.Marks:100

Note: Answer any FIVE full questions, choosing at least ONE question from each Unit.

Q.No.		Module-1	М		
1.	a)	With neat diagram explain the MOS Transistor physical Structure?	6		
	b)	With neat diagram explain the simple CMOS flip flop with 2 mux and 2 inverters.	8		
	c)	Differentiate between CMOS and NMOS	6		
OR					
2.	a)	With neat diagram explain physical construction/ layout of CMOS flip-flop.	10		
	b)	Explain how mos transistor can be used as switch?	10		
Module-2					
3.	a)	Write the CMOS inverter circuit and briefly explain . Write the CMOS VTC showing regions A,B,C,D,E. Derive the expressions for output voltage in region D	10		
	b)	Explain Accumulation, Depletion, and Inversion modes in an mos structure	6		
	c)	With the circuit diagram explain CMOS tristate inverter.	4		
OR					
4.	a)	Explain the n mos device behaviour under the inluence of different terminal voltages with neat diagram.	8		
	b)	 Explain the following i. channel length modulation ii. Noise margin iii. Body effect 	12		

Module-3					
5.	a)	With a diagram derive an expression for sheet resistance. Also write	8		
		the resistance of non-rectangular shapes			
	b)	Derive an equation for resistance for rise and fall time w.r.t cmos	8		
		nverter			
	c)	Explain rise time, fall time, delay time with respect to switching	4		
		characteristics for CMOS inverter.			
OR					
6.	a)	Explain how long wire is represented in terms of distributed RC section	4		
		and estimate the propagation time With suitable equation			
	b)	Derive an equation for static and dynamic power dissipation w.r.t	8		
		cmos inverter			
	c)	Write a short note on	8		
		i. Diffusion capacitance			
		ii. Routing capacitance			
Module-4					
7.	a)	Realize CMOS logic structure CMOS Complementary logic for	6		
		Boolean expression			
		Z = AB + C(D + E)			
	b)	Explain the C ² MOS [clocked CMOS logic] with an example	6		
	c)	Explain the circuit of pass logic function unit of	8		
		a) NMOS			
		b) Full CMOS TG			
		OP			
8	a)	UK	6		
0.	u)	Explain In-state pad and Bi-directional with neat diagrams and	0		
	b)	Explain the circuit of psudo NMOS logic by taking an example of	6		
		the Boolean function			
		$V = \overline{AB + C(D + F)}$			
		$\mathbf{I} = \mathbf{A}\mathbf{D} + \mathbf{C}(\mathbf{D} + \mathbf{L})$			
	c)	Explain the dynamic version of CVSL with an example. Also	8		
		realize 2 input AND/NAND using CVSL			
		1			

Module-5				
9.	a)	Explain the CMOS SR Latch circuit based on NOR 2 input gates.	6	
	b)	Explain the working of CMOS implementation of D-latch with neat circuit and timing diagram showing setup and hold time.	8	
	c)	Explain the static behavior of the 2-inverter basic bistable element	6	
		with neat circuit, schematic and voltage transfer curve		
OR				
10.	a)	Draw the diagram of 4-bit x 4-bit NOR based ROM array. Explain	6	
		its functioning.		
	b)	With necessary circuit diagram explain the operation of 3-transistor	10	
		DRAM cell with pull-up and read/write circuitry and waveforms.		
	c)	Explain the operation of 1-transistor DRAM cell with its access	4	
		lines		