Elements of Biotechnology and Biomir	Semester	I/II	
Course Code	1BEBT105/205	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- CO1: Explain the fundamental concepts of biotechnology.
- CO2: Demonstrate a foundational understanding of biotechnological techniques.
- CO3: Apply introductory practical approaches in biotechnology.
- CO4: Integrate interdisciplinary thinking to address challenges in engineering sectors.

Module-1

Basics of Biology:

Structure and functions of prokaryotic and eukaryotic cells. Central dogma of Biology (DNA to RNA to Protein), Biomolecules of life - Carbohydrates (examples of Mono, Di, Polysaccharides), Proteins (examples of enzymes, structural proteins, transport proteins, regulatory proteins, and hormones).

Number of Hours: 8

Module-2

Overview of Biotechnology:

History, scope, and branches/types of biotechnology such as medical biotechnology (red) - focusing on healthcare; agricultural biotechnology (green): improving crops and livestock; industrial biotechnology (white): using biological systems for industrial processes; environmental biotechnology (grey/brown): focused on environmental protection and remediation; marine biotechnology (blue): (oil slick), yellow biotechnology (food production),:probiotics and bioinformatics/computational biology; drug discovery

Number of Hours: 8

Module-3

Biotechnology Processes-& Sustainability

Bioprocess stages: Case study of Bio Ethanol production from agri-waste-qualitative (steps in upstream, and downstream processing, Biosafety levels, containment, cGMP/GLP and IPR issues). Circular bioeconomy and biotechnology's role in UN SDGs, Ethical, legal, and social issues in biotechnology, GI tags, specific case studies related to Basmati or Turmeric.

Number of Hours: 8

Module-4

AI application in Biological Research

Role of AI in genomics (flow chart). Role of AI in drug development (flow chart), AI-assisted target (receptor) design and ligand (inhibitor) design (flow chart), AI in medical imaging and disease diagnosis (flow chart), AI-driven personalized medicine and predictive healthcare (flow chart), Role of AI in agriculture and crop improvement (flow chart), Role of AI in fermentation industry and bioprocess optimization (flow chart), Role of AI in Protein and enzyme engineering (flow chart), Role of AI in biosensors and diagnostics (flow chart).

Number of Hours: 8

Module-5

Bioinspired Engineering:

History and scope of biomimetics/biomimicry, Examples involving a) Bioinspired materials: nacre, bone, spider silk, cuticle-based composites, b) Self-cleaning surfaces and biocement c) artificial blood. termite mound passive cooling, d) Bioinspired mechanisms: hygromorphic actuators, fish/bird locomotion, Seashell-based, spider web-inspired, and insect eye-inspired innovations, mosquito proboscis inspired needles, e) Medical devices and drug delivery inspired by biology (Exosomes, Liposomes, VLPs), f) Bioinspired energy (artificial photosynthesis).

Number of Hours: 8

Suggested Learning Resources: (Text Book/ Reference Book/ Manuals):

Text books:

- 1. P. K. Gupta, Elements of Biotechnology, Rastogi Publications, 468, 2010.
- 2. Vogel, Steven. Cats' Paws and Catapults: Mechanical Worlds of Nature and People. W. W. Norton & Company, 2000.

Reference books / Manuals:

- 1. Singh B.D., Biotechnology: Expanding Horizons, Kalyani Publishers, 768 pages, 2019.
- 2. Barnum, Susan R., Biotechnology: An Introduction, Cengage Learning, 432 pages, 2021.
- 3. Bar-Cohen, Yoseph, Biomimetics: Nature-Based Innovation, CRC Press, 788 pages, 2012.
- 4. Mukherjee, A.K., and Ghosh, S.K., Biomimicry: Nature Inspired Solutions, Narosa Publishing House, 260 pages, 2018.
- 5. Vincent, Julian F.V., Structural Biomaterials, Princeton University Press, 252 pages, 2012.
- 6. Herren, Ray V., Introduction to Biotechnology, Cengage Learning, 672 pages, 2018.
- 7. Nath, Bhaskar, Advances in Biotechnology, Atlantic Publishers, 300 pages, 2020.

Web links and Video Lectures (e-Resources):

- 1. Bioengineering: An Interface with Biology and Medicine, https://onlinecourses.nptel.ac.in/noc21 bt05/preview?utm source=chatgpt.com.
- 2. Introduction to Biomimicry (Multi-Disciplinary), https://onlinecourses.nptel.ac.in/noc22 ge24/preview?utm source=chatgpt.com.
- 3. Industrial Biotechnology,
 - https://onlinecourses.nptel.ac.in/noc20 bt21/preview?utm source=chatgpt.com
- 4. Fundamentals of Bioprocess Engineering, https://onlinecourses.nptel.ac.in/noc25 bt84/preview?utm source=chatgpt.com.
- **5.** Medical Biomaterials, https://onlinecourses.nptel.ac.in/noc20 bt12/preview?utm source=chatgpt.com.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. Flipped class
- 2. Chalk and talk
- 3. NPTEL and other videos for theory topics
- 4. Partial Delivery of course by Industry expert/industrial visits
- 5. ICT-Enabled Teaching.
- 6. Activity based learning.
- 7. Keep fundamentals as the core teaching content.
- 8. Present recent trends as short "industry snapshot" segments at the end of each module (e.g., 15–20 minutes), not as examinable depth topics.
- 9. Use case studies, videos, or demonstrations for the advanced concepts so students see applications without getting bogged down in mechanisms.
- 10. Make the trends part of assessments via assignments, mini-seminars, or group presentations, so the main lecture hours focus on the basics.

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the **SEE**, a student must score at least **35% of 50 marks**, i.e., **18 marks**.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE** is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity - 1: Case Study / Practical Assignment (Marks - 25)

INSTRUCTIONS:

- 1. Course instructor will refer to relevant textbooks, NPTEL resources, or recent research articles to derive the questions for problem-solving and application.
- 2. Course instructor must identify problems or activities from these areas:
 - o Biotechnology Fundamentals (DNA/RNA structure, biomolecules, cell ultrastructure)
 - o Biotechnological Techniques (PCR, gel electrophoresis, blotting, gene transfer methods)
 - o Applications (insulin production, stress-resistant plants, bioremediation, gene therapy)
 - o Biomimetics Basics (natural materials, bioinspired designs)
 - o Applications of Biomimetics (civil engineering, medical devices, robotics, energy systems)
- 3. Course instructor will assign THREE tasks from the above areas to the students for:
 - o Background study of the concept
 - o Experimental design or application design
 - Data collection/analysis or feasibility study
- 4. Students must demonstrate the solutions, experimental results, or design prototypes to the course instructor and submit the record containing:
 - Introduction & objectives
 - Methodology / approach used
 - o Observations & results
 - Analysis & discussion
 - o Conclusion & future scope
- 5. Course instructor must evaluate the student performance as per the rubrics provided for Learning Activity-1.

Component &	Outstanding (5)	Exceeds	Meets	Needs	Unsatisfa
CO-PO Mapping		Expectations	Expectatio	Improvement	ctory (1)
		(4)	ns (3)	(2)	
Clarity &	Concepts are explained	Concepts are	Concepts	Concepts are	Concepts
Accuracy of	with complete accuracy,	clear and	are	vague and	are
Concept	well-structured, and free	mostly	somewhat	missing	unclear,
Explanation	of ambiguity; strong	accurate; minor	clear but	important	incomple
[CO1] [PO9]	linkage to syllabus	ambiguity	lack	details; high	te, or
	topics.	present.	precision;	ambiguity.	irrelevan
			moderate		t to the
			ambiguity.		activity.
Appropriate Use	Demonstrates precise	Correctly uses	Uses	Limited	No
of Scientific	and context-appropriate	terminology	terminolog	understanding	evidence
Terminology and	use of	with minor	y with	of	of
Experimental/De	biotechnology/biomime	gaps; approach	partial	terminology;	correct
sign	tics terminology;	is clear but not	understan	approach is	terminol
Approach[CO2,	experimental/design	highly	ding or	unclear or	ogy
CO4] [PO1, PO3]	approach is innovative	innovative.	inconsiste	weak.	usage or
	and well-structured.		nt		relevant
			accuracy;		approac
			approach		h.
			is basic.		
Data Collection,	Provides accurate	Provides	Provides	Provides	Results/
Analysis &	results/data with	correct	correct	partially	data are
Interpretation	detailed analysis for	results/data	results/da	correct data;	incorrect
	multiple cases;	with analysis	ta with	minimal	or
	comparisons highlight	for multiple	limited	analysis, weak	missing;
	strengths and	cases, though	analysis;	or incomplete	no
	weaknesses clearly.	slightly less	compariso	comparisons.	meaning
		detailed.	ns are		ful
			shallow.		analysis.
Creativity &	Demonstrates	Shows	Shows	Minimal	No
Problem-Solving	outstanding creativity	creativity and	moderate	creativity;	creativit
in Application	and innovation in	some	creativity;	solutions are	y or
[CO3, CO4] [PO3,	applying	innovation;	solutions	repetitive or	problem-
PO11]	biotech/biomimetics	solutions are	are	unimaginative.	solving
	concepts to solve real-	practical and	functional		evident
	world problems.	relevant.	but not		in the
			innovative.		work.
	Documentation is		Document		No
D ' '	complete, well-	Documentation	ation is	I	documen
Documentation	organized, and includes	is complete	present	Incomplete	tation or
& Reflection	deep reflection on	with some	but lacks	documentation	reflectio
[CO1, CO4] [PO8,	improvements,	reflection on	detail or	; minimal	n marridad
P09, P011]	challenges, and learning	refinement and	depth in	reflection.	provided
	outcomes.	learning.	reflection.		as per schedule.
	1	1	i .		. scheame

Suggested Learning Activities may include (but are not limited to):

- Course Project
- Case Study Presentation
- Programming Assignment
- Tool/Software Exploration
- Literature Review
- Open Book Test (preferably at RBL4 and RBL5 levels)
- GATE-based Aptitude Test
- Assignment (at RBL3, RBL4, or RBL5 levels)
- Any other relevant and innovative academic activity
- Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- Flipped Classroom
- Problem-Based Learning (PBL)
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/ industrial visits
- ICT-Enabled Teaching
- Role Play